Skip to main content
Log in

The Influence of Y and Er on the Grain Structure and Superplasticity of Al-Cu-Mg-Based Alloys

  • Innovations in Forming Technologies for Light Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The superplasticity and microstructure evolution during superplastic deformation for two Al-Cu-Mg-Zr-Mn-Y and Al-Cu-Mg-Zr-Mn-Er alloys were compared. The heterogeneous microstructure was formed in both alloys. Coarse particles of the Cu and Y/Er-bearing and Mn, Fe, Si-bearing phases of solidification origin with a mean size of 1.1/1.4 µm and volume fraction of ~ 9% and fine precipitates of the Mn- and Zr-bearing phases were observed. Precipitates with Zr demonstrated L12 structure and contained Cu, Mg, and Y or Er. The residual elements Si and Fe were found in these precipitates for the alloy with Y. Due to PSN effect of coarse particles and Zener pinning effect of fine precipitates, a fine-grained structure with a mean size of ~ 6.5 µm was formed. Distribution of coarse particles in the aluminum solid solution was more homogeneous for Y-bearing alloy, which exhibited more uniform grain structure and a higher grain size stability with much better superplastic properties. The alloy with Y demonstrated strain rate sensitivity of 0.45–0.55 and elongation to failure of 400–550% at 5 × 10−4–1 × 10−2 s−1 and 575°C. Grain elongation to the tensile direction, dislocation activity in the grain interior and formation of low-angle grain boundaries were observed during superplastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.H. Chokshi, Adv. Eng. Mater. 22, 1 (2020).

    Google Scholar 

  2. L. Bhatta, A. Pesin, A.P. Zhilyaev, P. Tandon, C. Kong, and H. Yu, Metals (Basel). 10, 77 (2020).

    CAS  Google Scholar 

  3. T.G. Langdon, Adv. Eng. Mater. 22, 1900442 (2020).

    Google Scholar 

  4. F.A. Mohamed, Materials (Basel). 4, 1194 (2011).

    ADS  PubMed  PubMed Central  Google Scholar 

  5. X. Wang, Q. Li, R. Wu, X. Zhang, and L. Ma, Adv. Mater. Sci. Eng. 2018, 1 (2018).

    Google Scholar 

  6. R. Grimes, Mater. Sci. Technol. 19, 3 (2003).

    ADS  CAS  Google Scholar 

  7. T. Kudo, A. Goto, and K. Saito, Mater. Sci. Forum 735, 271 (2012).

    Google Scholar 

  8. M. Noda, M. Hirohashi, and K. Funami, Nippon Kinzoku Gakkaishi/J. Japan Inst. Met. 67, 98 (2003).

    CAS  Google Scholar 

  9. A.V. Mikhaylovskaya, A.A. Kishchik, A.D. Kotov, O.V. Rofman, and N.Y. Tabachkova, Mater. Sci. Eng. A 760, 37 (2019).

    CAS  Google Scholar 

  10. M. Li, Q. Pan, Y. Shi, X. Sun, and H. Xiang, Mater. Sci. Eng. A 687, 298 (2017).

    CAS  Google Scholar 

  11. A.A. Kishchik, A.V. Mikhaylovskaya, A.D. Kotov, O.V. Rofman, and V.K. Portnoy, Mater. Sci. Eng. A 718, 190 (2018).

    CAS  Google Scholar 

  12. L.M. Dougherty, I.M. Robertson, and J.S. Vetrano, Mater. Res. Soc. Symp. - Proc. 601, 25 (2000).

    CAS  Google Scholar 

  13. H. Jin, B.S. Amirkhiz, and D.J. Lloyd, Metall. Mater. Trans. A 49, 1962 (2018).

    CAS  Google Scholar 

  14. V.N. Chuvil’deev, M.Y. Gryaznov, S.V. Shotin, V.I. Kopylov, A.V. Nokhrin, C.V. Likhnitskii, A.A. Murashov, A.A. Bobrov, N.Y. Tabachkova, and O.E. Pirozhnikova, J. Alloys Compd. 877, 160099 (2021).

    Google Scholar 

  15. D.H. Shin, Y.J. Joo, W.J. Kim, and C.S. Lee, J. Mater. Sci. 33, 3073 (1998).

    ADS  CAS  Google Scholar 

  16. I.I. Novikov, V.K. Portnoy, V.S. Levchenko, and A.O. Nikiforov, Mater. Sci. Forum 243–245, 463 (1997).

    Google Scholar 

  17. I.I. Novikov, V.K. Portnoy, A.O. Titov, and D.Y. Belov, Scr. Mater. 13, 2705 (2000).

    Google Scholar 

  18. M. Kawasaki, and T.G. Langdon, Rev. Adv. Mater. Sci. 54, 46 (2018).

    CAS  Google Scholar 

  19. A.H. Chokshi, A.K. Mukherjee, and T.G. Langdon, Mater. Sci. Eng. R 10, 237 (1993).

    CAS  Google Scholar 

  20. C. Xu, M. Furukawa, Z. Horita, and T.G. Langdon, Adv. Eng. Mater. 51, 6139 (2003).

    CAS  Google Scholar 

  21. T.G. Langdon, Mech. Mater. 61, 7035 (2013).

    CAS  Google Scholar 

  22. M. Gazizov, and R. Kaibyshev, Mater. Sci. Forum 838–839, 373 (2016).

    Google Scholar 

  23. K. Rodak, D. Kuc, and T. Mikuszewski, Materials (Basel). 13, 5803 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. M. Kawasaki, H.-J. Lee, and T.G. Langdon, J. Mater. Sci. 50, 6700 (2015).

    ADS  CAS  Google Scholar 

  25. A. Alhamidi, and Z. Horita, Mater. Sci. Eng. A 622, 139 (2015).

    CAS  Google Scholar 

  26. M.M. Attallah, and H.G. Salem, Mater. Sci. Technol. 20, 1370 (2004).

    ADS  CAS  Google Scholar 

  27. X.M. Cheng, and J.G. Morris, Mater. Sci. Eng. A 323, 32 (2002).

    Google Scholar 

  28. J. Geng, Y. Li, G. Liu, H. Xiao, T. Hong, J. Huang, M. Wang, D. Chen, and H. Wang, Mater Charact 168, 110571 (2020).

    CAS  Google Scholar 

  29. A.V. Mikhaylovskaya, A.A. Kishchik, N.Y. Tabachkova, A.D. Kotov, V.V. Cheverikin, and A.I. Bazlov, JOM 72, 1619 (2020).

    ADS  CAS  Google Scholar 

  30. A.O. Mosleh, O.A. Yakovtseva, A.A. Kishchik, A.D. Kotov, E.B. Moustafa, and A.V. Mikhaylovskaya, JOM 14, 1 (2023).

    Google Scholar 

  31. B. Forbord, H. Hallem, N. Ryum, and K. Marthinsen, Mater. Sci. Eng. A 387–389, 936 (2004).

    Google Scholar 

  32. M.J. Jones, and F.J. Humphreys, Acta Mater. 51, 2149 (2003).

    ADS  CAS  Google Scholar 

  33. P.A. Manohar, M. Ferry, and T. Chandra, ISIJ Int. 38, 913 (1998).

    CAS  Google Scholar 

  34. O. Sh Sitdikov, E.V. Avtokratova, R.R. Ilyasov, and M.V. Markushev, J. Phys. Conf. Ser. 1431, 012053 (2020).

    Google Scholar 

  35. K. Liu, and X.-G. Chen, Mater. Des. 84, 340 (2015).

    CAS  Google Scholar 

  36. S.M. Dar, H. Liao, and A. Xu, J. Alloys Compd. 774, 758 (2019).

    CAS  Google Scholar 

  37. A.V. Mikhaylovskaya, V.K. Portnoy, A.G. Mochugovskiy, M.Y. Zadorozhnyy, N.Y. Tabachkova, and I.S. Golovin, Mater. Des. 109, 197 (2016).

    CAS  Google Scholar 

  38. Z. Jia, G. Hu, B. Forbord, and J.K. Solberg, Mater. Sci. Eng. A 444, 284 (2007).

    Google Scholar 

  39. I. Nikulin, A. Kipelova, S. Malopheyev, and R. Kaibyshev, Acta Mater. 60, 487 (2012).

    ADS  CAS  Google Scholar 

  40. Z. Yuan, Y. Tu, T. Yuan, Y. Huang, and Y. Zhang, Vacuum 184, 109915 (2021).

    ADS  CAS  Google Scholar 

  41. Y. Zhang, K. Gao, S. Wen, H. Huang, W. Wang, Z. Zhu, Z. Nie, and D. Zhou, J. Alloys Compd. 590, 526 (2014).

    CAS  Google Scholar 

  42. T.R. McNelley, D.L. Swisher, and M.T. Pérez-Prado, Metall. Mater. Trans. A 33, 279 (2002).

    Google Scholar 

  43. N. Furushiro, Y. Umakoshi, and K. Warashina, Mater. Sci. Forum 357–359, 249 (2001).

    Google Scholar 

  44. M. Ferry, N.E. Hamilton, and F.J. Humphreys, Acta Mater. 53, 1097 (2005).

    ADS  CAS  Google Scholar 

  45. Y.A. Filatov, V.I. Yelagin, and V.V. Zakharov, Mater. Sci. Eng. A 280, 97 (2000).

    Google Scholar 

  46. G.M. Novotny, and A.J. Ardell, Mater. Sci. Eng. A 318, 144 (2001).

    Google Scholar 

  47. Z. He, Z. Yin, S. Lin, Y. Deng, B. Shang, and X. Zhou, J. Rare Earths 28, 641 (2010).

    CAS  Google Scholar 

  48. H. Che, X. Jiang, N. Qiao, and X. Liu, J. Alloys Compd. 708, 662 (2017).

    CAS  Google Scholar 

  49. H. Wu, S.P. Wen, H. Huang, B.L. Li, X.L. Wu, K.Y. Gao, W. Wang, and Z.R. Nie, Mater. Sci. Eng. A 689, 313 (2017).

    CAS  Google Scholar 

  50. S. Chen, C. Li, G. Lian, C. Guo, and Z. Du, J. Rare Earths 30, 1276 (2012).

    CAS  Google Scholar 

  51. C. Booth-Morrison, D.N. Seidman, and D.C. Dunand, Acta Mater. 60, 3643 (2012).

    ADS  CAS  Google Scholar 

  52. Y. Dongxia, L. Xiaoyan, H. Dingyong, and H. Hui, Mater. Sci. Eng. A 561, 226 (2013).

    Google Scholar 

  53. H.L. Hao, D.R. Ni, H. Huang, D. Wang, B.L. Xiao, Z.R. Nie, and Z.Y. Ma, Mater. Sci. Eng. A 559, 889 (2013).

    CAS  Google Scholar 

  54. D. Erdeniz, A. De Luca, D.N. Seidman, and D.C. Dunand, Mater Charact 141, 260 (2018).

    CAS  Google Scholar 

  55. R.A. Karnesky, D.C. Dunand, and D.N. Seidman, Acta Mater. 57, 4022 (2009).

    ADS  CAS  Google Scholar 

  56. A.V. Pozdnyakov, A.A. Osipenkova, D.A. Popov, S.V. Makhov, and V.I. Napalkov, Met. Sci. Heat Treat. 58, 537 (2017).

    ADS  CAS  Google Scholar 

  57. Y. Zhang, H. Gao, Y. Kuai, Y. Han, J. Wang, B. Sun, S. Gu, and W. You, Mater Charact 86, 1 (2013).

    Google Scholar 

  58. Y. Zhang, J. Gu, Y. Tian, H. Gao, J. Wang, and B. Sun, Mater. Sci. Eng. A 616, 132 (2014).

    CAS  Google Scholar 

  59. L.E. Gorlov, I.S. Loginova, M.V. Glavatskikh, R.Y. Barkov, and A.V. Pozdniakov, J. Alloys Compd. 918, 165748 (2022).

    CAS  Google Scholar 

  60. N. Ridley, E. Cullen, and F.J. Humphreys, Mater. Sci. Technol. 16, 117 (2000).

    ADS  CAS  Google Scholar 

  61. G. Zou, L. Ye, J. Li, and Z. Shen, Mater. Sci. Eng. A 876, 145178 (2023).

    CAS  Google Scholar 

  62. Z. Shen, L. Ye, X. Liu, and Y. Dong, Mater. Lett. 340, 134142 (2023).

    CAS  Google Scholar 

  63. A.V. Pozdniakov, R.Y. Barkov, S.M. Amer, V.S. Levchenko, A.D. Kotov, and A.V. Mikhaylovskaya, Mater. Sci. Eng. A 758, 28 (2019).

    CAS  Google Scholar 

  64. S.M. Amer, RYu. Barkov, O.A. Yakovtseva, I.S. Loginova, and A.V. Pozdniakov, Mater. Sci. Technol. 36, 453 (2020).

    ADS  CAS  Google Scholar 

  65. M.G. Khomutov, S.M. Amer, R.Y. Barkov, M.V. Glavatskikh, A.Y. Churyumov, and A.V. Pozdniakov, Metals (Basel). 11, 1521 (2021).

    CAS  Google Scholar 

  66. A.V. Pozdniakov, and R.Y. Barkov, Mater. Sci. Technol. 34, 1489 (2018).

    ADS  CAS  Google Scholar 

  67. S.M. Amer, R.Y. Barkov, A.S. Prosviryakov, and A.V. Pozdniakov, Phys. Met. Metallogr. 122, 908 (2021).

    ADS  CAS  Google Scholar 

  68. S.M. Amer, A.V. Mikhaylovskaya, R.Y. Barkov, A.D. Kotov, A.G. Mochugovskiy, O.A. Yakovtseva, M.V. Glavatskikh, I.S. Loginova, S.V. Medvedeva, and A.V. Pozdniakov, JOM 73, 3092 (2021).

    ADS  CAS  Google Scholar 

  69. M.V. Glazoff, A.V. Khvan, V.S. Zolotorevsky, N.A. Belov, and A.T. Dinsdale, Industrial and Perspective Casting Alloys Casting Aluminum Alloys (Elsevier, Amsterdam, 2019).

    Google Scholar 

  70. R.I. Arriaga-Benitez, and M. Pekguleryuz, Mater. Sci. Eng. A 872, 144949 (2023).

    CAS  Google Scholar 

  71. F. Zupanič, S. Žist, M. Albu, I. Letofsky-Papst, J. Burja, M. Vončina, and T. Bončina, Materials (Basel). 16, 2949 (2023).

    ADS  PubMed  PubMed Central  Google Scholar 

  72. F. Liu, X. Zhu, J. Qin, W. Zhou, J. Ling, Q. Dong, J. Yu, H. Nagaumi, and B. Zhang, Mater. Sci. Eng. A 860, 144269 (2022).

    CAS  Google Scholar 

  73. R.A. Michi, A. De Luca, D.N. Seidman, and D.C. Dunand, Mater Charact 147, 72 (2019).

    CAS  Google Scholar 

  74. W. Nasim, S. Yazdi, R. Santamarta, J. Malik, D. Erdeniz, B. Mansoor, D.N. Seidman, D.C. Dunand, and I. Karaman, J. Mater. Sci. 54, 1857 (2019).

    ADS  CAS  Google Scholar 

  75. L. Li, J. Tang, Z. Liu, Y. Wang, Y. Jiang, and G. Sha, J. Alloys Compd. 947, 169667 (2023).

    CAS  Google Scholar 

  76. N.Q. Vo, D.N. Seidman, and D.C. Dunand, Mater. Sci. Eng. A 734, 27 (2018).

    CAS  Google Scholar 

  77. N.Q. Vo, D.C. Dunand, and D.N. Seidman, Mater. Sci. Eng. A 677, 485 (2016).

    CAS  Google Scholar 

  78. T. R. McNelley, M. E. McMahon, and M. T. Pérez–Prado, Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 357, 1683 (1999).

  79. M. Kawasaki, and T.G. Langdon, Adv. Mater. Res. 829, 3 (2014).

    Google Scholar 

  80. A.V. Mikhaylovskaya, O.A. Yakovtseva, A.G. Mochugovskiy, J. Cifre, and I.S. Golovin, J. Alloys Compd. 926, 166785 (2022).

    CAS  Google Scholar 

  81. A.V. Mikhaylovskaya, O.A. Yakovtseva, and A.V. Irzhak, Mater. Sci. Eng. A 833, 142524 (2022).

    CAS  Google Scholar 

  82. K.A. Padmanabhan, J. Hirsch, and K. Lucke, J. Mater. Sci. 26, 5309 (1991).

    ADS  CAS  Google Scholar 

  83. R.B. Figueiredo, and T.G. Langdon, J. Mater. Sci. 57, 5210 (2022).

    ADS  CAS  Google Scholar 

  84. H. Masuda, H. Tobe, E. Sato, Y. Sugino, and S. Ukai, Acta Mater. 176, 63 (2019).

    ADS  CAS  Google Scholar 

  85. H. Masuda, H. Tobe, T. Hara, and E. Sato, Scr. Mater. 164, 82 (2019).

    CAS  Google Scholar 

  86. X. Sauvage, N. Enikeev, R. Valiev, Y. Nasedkina, and M. Murashkin, Acta Mater. 72, 125 (2014).

    ADS  CAS  Google Scholar 

  87. K. Sotoudeh, and P.S. Bate, Acta Mater. 58, 1909 (2010).

    ADS  CAS  Google Scholar 

  88. S. Shu, A. De Luca, D.C. Dunand, and D.N. Seidman, Mater. Sci. Eng. A 800, 140288 (2021).

    CAS  Google Scholar 

  89. A.R. Farkoosh, D.C. Dunand, and D.N. Seidman, Mater. Sci. Eng. A 798, 140159 (2020).

    CAS  Google Scholar 

  90. S. Taylor, V. Janik, R. Grimes, and R. Dashwood, Materwiss. Werksttech. 48, 876 (2017).

    CAS  Google Scholar 

Download references

Acknowledgements

The phase composition studies, superplasticity tests and EBSD grain boundary maps were supported by the Russian Science Foundation (Project No. 19-79-10242), https://rscf.ru/project/19-79-10242/. The TEM studies were funded by the state task to MISIS University, Project Code FSME-2023-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Yu Barkov.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhaylovskaya, A.V., Kotov, A.D., Barkov, R.Y. et al. The Influence of Y and Er on the Grain Structure and Superplasticity of Al-Cu-Mg-Based Alloys. JOM 76, 1821–1830 (2024). https://doi.org/10.1007/s11837-023-06214-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06214-6

Navigation