Skip to main content

Advertisement

Log in

Metal/Polymer/Metal Sandwich Systems: An Overview

  • Advanced Functional and Structural Thin Films and Coatings
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A metal/polymer/metal sandwich can combine the benefits of individual materials with desirable properties and functionalities. They are commonly used in aviation and automotive industries. They provide the desired mechanical strength, high elasticity, and light weight, which also makes them suitable for biomedical prostheses by bridging the gap between implants and human tissues. However, epoxy resins, generally used for bonding the individual layers in industrial applications, are detrimental to biomedical applications. Therefore, it is essential to replace epoxy resins with a biocompatible interlayer to ensure both biocompatibility and faultless adhesion by a strong covalent bond. The interest in this material configuration has surged since the early work by Palkowski in this field. This study offers an encompassing view of metal/polymer/metal sandwich systems and delves into a comprehensive discussion about their diverse applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.K.J. Helms and J. Krack, Energy savings by light-weighting (2016). Available online: https://www.world-aluminium.org/media/filer_public/2018/01/02/ifeu_-_energy_savings_by_light-weighting_2016_update_final_3-2017_corrected_12-2017.pdf

  2. Y.S. Chen, T.J. Hsu, and S.I. Chen, Metall. Trans. A 22(3), 653 https://doi.org/10.1007/BF02670287 (1991).

    Article  Google Scholar 

  3. B. Engel and J. Buhl, Steel Res. Int. 82(6), 626 https://doi.org/10.1002/srin.201000205 (2011).

    Article  Google Scholar 

  4. L. Librescu, S.-Y. Oh, and J. Hohe, Int. J. Solids Struct. 43(13), 3794 https://doi.org/10.1016/j.ijsolstr.2005.03.052 (2006).

    Article  Google Scholar 

  5. L. Librescu and T. Hause, Compos. Struct. 48(1–3), 1 https://doi.org/10.1016/S0263-8223(99)00068-9 (2000).

    Article  Google Scholar 

  6. J.K. Kim and T. Yu, J. Mater. Process. Technol. 63, 33 (1997).

    Article  Google Scholar 

  7. D. Zenkert and N. Industrifond, The handbook of sandwich construction, in North European Engineering and Science Conference Series. ed. by D. Zenkert (Engineering Materials Advisory Services Ltd, West Midlands, 1997).

    Google Scholar 

  8. B. Harris, Mater. Des. 12(5), 259 https://doi.org/10.1016/0261-3069(91)90006-P (1991).

    Article  MathSciNet  Google Scholar 

  9. I. Burchitz, R. Boesenkool, S. van der Zwaag, and M. Tassoul, Mater. Des. 26(4), 271 https://doi.org/10.1016/j.matdes.2004.06.021 (2005).

    Article  Google Scholar 

  10. R. Alderliesten, Fatigue and Fracture of Fibre Metal Laminates, vol 236. (Springer, New York, NY, 2017).

    Book  Google Scholar 

  11. L.B. Vogelesang and J.W. Gunnink, Mater. Des. 7(6), 287 https://doi.org/10.1016/0261-3069(86)90098-1 (1986).

    Article  Google Scholar 

  12. A. Vlot, L. Vogelesang, and T. de Vries, J. Aircr. Eng. Aerosp. Technol. Int. J. 74, 9 (2002).

    Article  Google Scholar 

  13. R.J.H. Wanhill, GLARE®: a versatile fibre metal laminate (FML) concept, in Aerospace Materials and Material Technologies. ed. by N.E. Prasad, and R.J.H. Wanhill (Springer, Singapore, 2017), pp. 291–307.

    Chapter  Google Scholar 

  14. R. Alderliesten, C. Rans, and R. Benedictus, Compos. Sci. Technol. 68(14), 2983 https://doi.org/10.1016/j.compscitech.2008.06.017 (2008).

    Article  Google Scholar 

  15. R.G.J. van Rooijen, J. Sinke, and S. van der Zwaag, J. Adhes. Sci. Technol. 19(16), 1387 https://doi.org/10.1163/156856105774805840 (2005).

    Article  Google Scholar 

  16. G. Reyes and H. Kang, J. Mater. Process. Technol. 186(1–3), 284 https://doi.org/10.1016/j.jmatprotec.2006.12.050 (2007).

    Article  Google Scholar 

  17. H. Palkowski, O.A. Sokolova, and A. Carradò, Sandwich materials, in Encyclopedia of Automotive Engineering. ed. by D. Crolla, D.E. Foster, T. Kobayashi, and N. Vaughan (Wiley, Chichester, 2013), pp. 1–17.

    Google Scholar 

  18. H. Palkowski and A. Carradò, Key Eng. Mater. 684, 323 https://doi.org/10.4028/www.scientific.net/KEM.684.323 (2016).

    Article  Google Scholar 

  19. H. Palkowski, P. Giese, V. Wesling, G. Lange, S. Spieler, and J. Göllner, Mater. Werkst. 37(7), 605 https://doi.org/10.1002/mawe.200600039 (2006).

    Article  Google Scholar 

  20. J. Buhl, Umformverhalten und Grenzen von Schichtverbundwerkstoffen (Universität Siegen, Siegen, Deutschland, 2014).

    Google Scholar 

  21. M. Harhash, Forming Behaviour of Multilayer Metal/Polymer/Metal Systems (TU Clausthal, Claustahl-Zellerfeld, 2017).

    Google Scholar 

  22. O. Sokolova, Study of Metal/Polymer/Metal Hybrid Sandwich Composites for the Automotive Industry (TU Clausthal, Clausthal-Zellerfeld, Deutschland, 2012).

    Google Scholar 

  23. W. Hua, Forming Behaviour of Sandwich Materials Made of Steel Covers and Polyamide Cores with and without Glass Fibre Reinforcement (TU Clausthal, Claustahl-Zellerfeld, 2022).

    Google Scholar 

  24. O.A. Sokolova, A. Carradò, and H. Palkowski, Compos. Struct. 94(1), 1 https://doi.org/10.1016/j.compstruct.2011.08.013 (2011).

    Article  Google Scholar 

  25. A. Carradò, J. Faerber, S. Niemeyer, G. Ziegmann, and H. Palkowski, Compos. Struct. 93(2), 715 https://doi.org/10.1016/j.compstruct.2010.07.016 (2011).

    Article  Google Scholar 

  26. G. Lange, A. Carradò, and H. Palkowski, Mater. Manuf. Process. 24(10–11), 1150 https://doi.org/10.1080/10426910902978977 (2009).

    Article  Google Scholar 

  27. O. Sokolova, A. Carradó, and H. Palkowski, Adv. Mater. Res. 137, 81 https://doi.org/10.4028/www.scientific.net/AMR.137.81 (2010).

    Article  Google Scholar 

  28. C. Sguazzo, M. Harhash, M. Grafenhorst, H. Palkowski, and S. Hartmann, PAMM 14(1), 245 https://doi.org/10.1002/pamm.201410110 (2014).

    Article  Google Scholar 

  29. M. Harhash, R.R. Gilbert, S. Hartmann, and H. Palkowski, Compos. Struct. 202, 1308 https://doi.org/10.1016/j.compstruct.2018.06.066 (2018).

    Article  Google Scholar 

  30. M. Harhash, R.R. Gilbert, S. Hartmann, and H. Palkowski, Compos. Struct. 232, 111421 https://doi.org/10.1016/j.compstruct.2019.111421 (2020).

    Article  Google Scholar 

  31. S.P. Murzin, H. Palkowski, A.A. Melnikov, and M.V. Blokhin, Metals 12(2), 256 https://doi.org/10.3390/met12020256 (2022).

    Article  Google Scholar 

  32. S.P. Murzin, H. Palkowski, A.A. Melnikov, M.V. Blokhin, and S. Osipov, Appl. Sci. 12(14), 7099 https://doi.org/10.3390/app12147099 (2022).

    Article  Google Scholar 

  33. M. Harhash, T. Fischer, M. Grubenmann, W. Hua, J. Heingärtner, M. Kuhtz, M. Gude, P. Hora, G. Ziegmann, and H. Palkowski, Compos. Part B Eng. 226, 109367 https://doi.org/10.1016/j.compositesb.2021.109367 (2021).

    Article  Google Scholar 

  34. A. Carradò, O. Sokolova, B. Donnio, and H. Palkowski, J. Appl. Polym. Sci. 120(6), 3709 https://doi.org/10.1002/app.33583 (2011).

    Article  Google Scholar 

  35. H. Munkert, F. Voigts, L. Wegewitz, H. Palkowski, and W. Maus-Friedrichs, Mater. Werkst. 44(1), 36 https://doi.org/10.1002/mawe.201300051 (2013).

    Article  Google Scholar 

  36. W. Hua, T. Fischer, M. Harhash, G. Ziegmann, and H. Palkowski, Compos. Struct. 236, 111779 https://doi.org/10.1016/j.compstruct.2019.111779 (2020).

    Article  Google Scholar 

  37. O.A. Sokolova, M. Kühn, and H. Palkowski, Arch. Civ. Mech. Eng. 12(2), 105 https://doi.org/10.1016/j.acme.2012.05.001 (2012).

    Article  Google Scholar 

  38. D.S. Molchanov, H. Palkowski, S. Chernyakin, and P.G. Karagiannidis, Mater. Geoenviron. 67(2), 45 https://doi.org/10.2478/rmzmag-2020-0010 (2020).

    Article  Google Scholar 

  39. C. Colombo, A. Carradó, H. Palkowski, and L. Vergani, Compos. Struct. 133, 140 https://doi.org/10.1016/j.compstruct.2015.07.078 (2015).

    Article  Google Scholar 

  40. C. Colombo, M. Harhash, H. Palkowski, and L. Vergani, Compos. Struct. 184, 279 https://doi.org/10.1016/j.compstruct.2017.10.001 (2018).

    Article  Google Scholar 

  41. M. Harhash, A. Carrado, and H. Palkowski, Forming limit diagram of steel/polymer/steel sandwich systems for the automotive industry. TMS Annual Meeting (2014)

  42. M. Harhash and H. Palkowski, J. Mater. Res. Technol. 13, 417 https://doi.org/10.1016/j.jmrt.2021.04.088 (2021).

    Article  Google Scholar 

  43. T. Fischer, M. Grubenmann, M. Harhash, W. Hua, J. Heingärtner, P. Hora, H. Palkowski, and G. Ziegmann, Compos. Struct. 258, 113418 https://doi.org/10.1016/j.compstruct.2020.113418 (2021).

    Article  Google Scholar 

  44. M. Khardin, M. Harhash, D. Chernikov, V. Glushchenkov, and H. Palkowski, Compos. Struct. 252, 112729 https://doi.org/10.1016/j.compstruct.2020.112729 (2020).

    Article  Google Scholar 

  45. M. Harhash, O. Sokolova, A. Carradó, and H. Palkowski, Compos. Struct. 118, 112 https://doi.org/10.1016/j.compstruct.2014.07.011 (2014).

    Article  Google Scholar 

  46. M. Harhash, A. Carradò, and H. Palkowski, Compos. Struct. 160, 1084 https://doi.org/10.1016/j.compstruct.2016.10.111 (2017).

    Article  Google Scholar 

  47. H. Palkowski, O. Sokolova, and A. Carrado, Mater. Sci. Forum 706–709, 681 https://doi.org/10.4028/www.scientific.net/MSF.706-709.681 (2012).

    Article  Google Scholar 

  48. V. Harms, M. Harhash, A. Carrado, and H. Palkowski, KEM 746, 275 https://doi.org/10.4028/www.scientific.net/KEM.746.275 (2017).

    Article  Google Scholar 

  49. M. Harhash, M. Kuhtz, J. Richter, A. Hornig, M. Gude, and H. Palkowski, Compos. Struct. 262, 113619 https://doi.org/10.1016/j.compstruct.2021.113619 (2021).

    Article  Google Scholar 

  50. J. Richter, M. Kuhtz, A. Hornig, M. Harhash, H. Palkowski, and M. Gude, Metals 11(5), 818 https://doi.org/10.3390/met11050818 (2021).

    Article  Google Scholar 

  51. H. Palkowski, V. Stanic, and A. Carradò, JOM 64(4), 514 https://doi.org/10.1007/s11837-012-0294-4 (2012).

    Article  Google Scholar 

  52. V.Q. Le, A. Cochis, L. Rimondini, G. Pourroy, V. Stanic, H. Palkowski, and A. Carradò, RSC Adv. 3(28), 11255 https://doi.org/10.1039/c3ra23385e (2013).

    Article  Google Scholar 

  53. M. Harhash, A. Carradò, and H. Palkowski, Mater. Werkst. 45(12), 1084 https://doi.org/10.1002/mawe.201400356 (2014).

    Article  Google Scholar 

  54. M. Reggente, M. Natali, D. Passeri, M. Lucci, I. Davoli, G. Pourroy, P. Masson, H. Palkowski, U. Hangen, A. Carradò, and M. Rossi, Colloids Surf. Physicochem. Eng. Asp. 532, 244 https://doi.org/10.1016/j.colsurfa.2017.05.011 (2017).

    Article  Google Scholar 

  55. M. Reggente, P. Masson, C. Dollinger, H. Palkowski, S. Zafeiratos, L. Jacomine, D. Passeri, M. Rossi, N.E. Vrana, G. Pourroy, A. Carradò, and A.C.S. Appl, Mater. Interfaces 10(6), 5967 https://doi.org/10.1021/acsami.7b17008 (2018).

    Article  Google Scholar 

  56. M. Reggente, M. Harhash, S. Kriegel, P. Masson, J. Faerber, G. Pourroy, H. Palkowski, and A. Carradò, Compos. Struct. 218, 107 https://doi.org/10.1016/j.compstruct.2019.03.039 (2019).

    Article  Google Scholar 

  57. M. Reggente, S. Kriegel, W. He, P. Masson, G. Pourroy, F. Mura, J. Faerber, D. Passeri, M. Rossi, H. Palkowski, and A. Carradò, Pure Appl. Chem. 91(10), 1687 https://doi.org/10.1515/pac-2019-0223 (2019).

    Article  Google Scholar 

  58. G.S. Nayak, F. Mouillard, P. Masson, G. Pourroy, H. Palkowski, and A. Carradò, JOM 74(1), 96 https://doi.org/10.1007/s11837-021-04995-2 (2022).

    Article  Google Scholar 

  59. G.S. Nayak, A. Carradò, P. Masson, G. Pourroy, F. Mouillard, V. Migonney, C. Falentin-Daudre, C. Pereira, and H. Palkowski, JOM 74(1), 102 https://doi.org/10.1007/s11837-021-04992-5 (2022).

    Article  Google Scholar 

  60. Tantec prospect, Tantec elektrische oberfla¨chenbehandlung–coronabehandlung: theorie. Available: http://www.tantec.com

  61. P.P. Tsai, L.C. Wadsworth, and J.R. Roth, Text. Res. J. 67(5), 359 https://doi.org/10.1177/004051759706700509 (1997).

    Article  Google Scholar 

  62. M.F. Ashby, Materials Selection in Mechanical Design, 3rd edn. (Butterworth-Heinemann, Amsterdam Boston, 2005).

    Google Scholar 

  63. M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Prog. Mater. Sci. 54(3), 397 https://doi.org/10.1016/j.pmatsci.2008.06.004 (2009).

    Article  Google Scholar 

  64. J. Peterson and P.C. Dechow, Anat. Rec. 274A(1), 785 https://doi.org/10.1002/ar.a.10096 (2003).

    Article  Google Scholar 

  65. W. Hua, M. Harhash, G. Ziegmann, A. Carradò, and H. Palkowski, Metals 13(7), 1291 https://doi.org/10.3390/met13071291 (2023).

    Article  Google Scholar 

  66. W. Hua, M. Harhash, G. Ziegmann, A. Carradò, and H. Palkowski, Appl. Sci. 13(11), 6611 https://doi.org/10.3390/app13116611 (2023).

    Article  Google Scholar 

  67. W. Hua, M. Harhash, G. Ziegmann, A. Carradò, and H. Palkowski, Appl. Sci. 13(11), 6629 https://doi.org/10.3390/app13116629 (2023).

    Article  Google Scholar 

  68. S. Aydin, B. Kucukyuruk, B. Abuzayed, S. Aydin, and G.Z. Sanus, J. Neurosci. Rural Pract. 02(02), 162 https://doi.org/10.4103/0976-3147.83584 (2011).

    Article  Google Scholar 

  69. T.C. Origitano, R. Izquierdo, and L.B. Scannicchio, Skull Base 5(02), 109 https://doi.org/10.1055/s-2008-1058941 (1995).

    Article  Google Scholar 

  70. B. Lethaus, Y. Safi, M. Ter Laak-Poort, A. Kloss-Brandstätter, F. Banki, C. Robbenmenke, U. Steinseifer, and P. Kessler, J. Neurotrauma 29(6), 1077 https://doi.org/10.1089/neu.2011.1794 (2012).

    Article  Google Scholar 

  71. A. Thien, N.K.K. King, B.T. Ang, E. Wang, and I. Ng, World Neurosurg. 83(2), 176 https://doi.org/10.1016/j.wneu.2014.06.003 (2015).

    Article  Google Scholar 

  72. B.L. Eppley, L. Hollier, and S. Stal, J. Craniofac. Surg. 14(2), 209 https://doi.org/10.1097/00001665-200303000-00014 (2003).

    Article  Google Scholar 

  73. O. Laghzali, G.S. Nayak, F. Mouillard, P. Masson, G. Pourroy, H. Palkowski, and A. Carradò, Emerg. Mater. Res. 11(2), 176 https://doi.org/10.1680/jemmr.21.00138 (2022).

    Article  Google Scholar 

  74. M. Cabraja, M. Klein, and T.-N. Lehmann, Neurosurg. Focus 26(6), E10 https://doi.org/10.3171/2009.3.FOCUS091 (2009).

    Article  Google Scholar 

  75. A. Balossier, A. Durand, V.-V. Achim, R. Noudel, S. Hurel, and E. Emery, Neurochirurgie 57(1), 21 https://doi.org/10.1016/j.neuchi.2010.08.003 (2011).

    Article  Google Scholar 

  76. M.I.Z. Ridzwan, S. Shuib, A.Y. Hassan, A.A. Shokri, and M.N. Mohamad Ib, J. Med. Sci. 7(3), 460 https://doi.org/10.3923/jms.2007.460.467 (2007).

    Article  Google Scholar 

  77. C. Sanchez, P. Belleville, M. Popall, and L. Nicole, Chem. Soc. Rev. 40(2), 696 https://doi.org/10.1039/c0cs00136h (2011).

    Article  Google Scholar 

  78. Y. Fujimoto, Y. Kobayashi, M. Yamaguchi, and J.A.C.C. Cardiovasc, Interv. 5(3), e5 https://doi.org/10.1016/j.jcin.2011.09.028 (2012).

    Article  Google Scholar 

  79. W. Sun, W. Liu, Z. Wu, and H. Chen, Macromol. Rapid Commun. 41(8), 1900430 https://doi.org/10.1002/marc.201900430 (2020).

    Article  Google Scholar 

  80. J.-S. Wang and K. Matyjaszewski, J. Am. Chem. Soc. 117(20), 5614 https://doi.org/10.1021/ja00125a035 (1995).

    Article  Google Scholar 

  81. I. Minet, J. Delhalle, L. Hevesi, and Z. Mekhalif, J. Colloid Interface Sci. 332(2), 317 https://doi.org/10.1016/j.jcis.2008.12.066 (2009).

    Article  Google Scholar 

  82. G. Guerrero, P.H. Mutin, and A. Vioux, Chem. Mater. 13(11), 4367 https://doi.org/10.1021/cm001253u (2001).

    Article  Google Scholar 

  83. V. Vergnat, G. Pourroy, and P. Masson, Polym. Int. 62(6), 878–883 https://doi.org/10.1002/pi.4435 (2013).

    Article  Google Scholar 

  84. T. Schott, F. Liautaud, S. Kriegel, J. Faerber, W. He, P. Masson, G. Pourroy, and A. Carradò, Pure Appl. Chem. https://doi.org/10.1515/pac-2018-1218 (2019).

    Article  Google Scholar 

  85. P.G. de Gennes, Macromolecules 13(5), 1069 https://doi.org/10.1021/ma60077a009 (1980).

    Article  Google Scholar 

  86. E. Raphael and P.G. De Gennes, J. Phys. Chem. 96(10), 4002 https://doi.org/10.1021/j100189a018 (1992).

    Article  Google Scholar 

  87. Y. Liu, G. Reiter, K. Kunz, and M. Stamm, Macromolecules 26(8), 2134 https://doi.org/10.1021/ma00060a050 (1993).

    Article  Google Scholar 

  88. F. Awaja, Polymer 97, 387 https://doi.org/10.1016/j.polymer.2016.05.043 (2016).

    Article  Google Scholar 

  89. C. Ageorges and L. Ye, Fusion bonding of polymer composites, in Engineering materials and processes. (Springer, London, 2002).

    Google Scholar 

  90. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, and T. Yamamuro, J. Biomed. Mater. Res. 24(6), 721 https://doi.org/10.1002/jbm.820240607 (1990).

    Article  Google Scholar 

  91. M. Tanahashi, et al., J. Appl. Biomater. 5(4), 339 https://doi.org/10.1002/jab.770050409 (1994).

    Article  Google Scholar 

  92. C. Pereira, J.-S. Baumann, P. Masson, G. Pourroy, A. Carradò, V. Migonney, and C. Falentin-Daudre, JOM 74(1), 87 https://doi.org/10.1007/s11837-021-04997-0 (2022).

    Article  Google Scholar 

  93. C. Pereira, C.S. Da Moura, A. Carradò, and C. Falentin-Daudre, Colloids Surf. Physicochem. Eng. Asp. 655, 130295 https://doi.org/10.1016/j.colsurfa.2022.130295 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the bilateral financial support of the German Research Foundation (DFG), grant no. PA 837/47-1, and the French Research Foundation (ANR), grant no. ANR-18-CE92-0056.

Funding

Agence Nationale de la Recherche (18-CE92-0056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adele Carradò.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carradò, A., Ravindra, N.M. Metal/Polymer/Metal Sandwich Systems: An Overview. JOM 75, 5126–5140 (2023). https://doi.org/10.1007/s11837-023-06207-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06207-5

Navigation