Skip to main content
Log in

Corrosion Behavior of Fe81Cr19, Fe49Co49V2, and Co72Fe4Mn4Nb4Si2B14 Alloys in Simulated Venusian Environment

  • Environmental Stability of Materials and Coatings at High Temperatures
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This study evaluates the high-temperature stability of soft magnetic materials under expected Venusian surface conditions to inform relevant lander designs. Soft magnetic materials enable motors, actuators, and passive components in the power conversion system. We investigate two common bulk crystalline alloys, Fe81Cr19 and Fe49Co49V2, as well as a metallic glass, Co72Fe4Mn4Nb4Si2B14. Pertinent atmospheric conditions were simulated using the NASA Glenn Extreme Environment Rig (GEER). X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDS) were performed on exposed samples leading to further understanding of the corrosion behavior of Fe- and Co-based materials in a simulated Venusian atmosphere. Both oxidation and sulfidation are induced in all three materials. The amorphous structure of Co72Fe4Mn4Nb4Si2B14 and, potentially, the formation of B and Si-based protective layers, yield improved corrosion resistance relative to Fe49Co49V2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Kremic, R. Ghail, M. Gilmore, G. Hunter, W. Kiefer, S. Limaye, M. Pauken, C. Tolbert, and C. Wilson, Planet. Space Sci. 190, 104961 https://doi.org/10.1016/j.pss.2020.104961 (2020).

    Article  Google Scholar 

  2. S.J. Mackwell, A.A. Simon-Miller, J.W. Harder and M.A. Bullock, Comparative Climatology of Terrestrial Planets, (University of Arizona Press, 2014).

  3. G. Genta, Terraforming Mars, (2021), pp 1-22.

  4. T. Kremic, D. Vento, N. Lalli and T. Palinski, In 2014 IEEE Aerospace Conference, (2014), pp 1-9.

  5. G.C.C. Costa, N.S. Jacobson, D. Lukco, G.W. Hunter, L. Nakley, B.G. Radoman-Shaw, and R.P. Harvey, Corros. Sci. 132, 260 https://doi.org/10.1016/j.corsci.2018.01.002 (2018).

    Article  Google Scholar 

  6. D. Lukco, D.J. Spry, R.P. Harvey, G.C.C. Costa, R.S. Okojie, A. Avishai, L.M. Nakley, P.G. Neudeck, and G.W. Hunter, Earth Space Sci. 5, 270–284 https://doi.org/10.1029/2017ea000355 (2018).

    Article  Google Scholar 

  7. D. Lukco, D.J. Spry, P.G. Neudeck, L.M. Nakley, K.G. Phillips, R.S. Okojie, and G.W. Hunter, J. Spacecr. Rocket. 57, 1118–1128 https://doi.org/10.2514/1.A34617 (2020).

    Article  Google Scholar 

  8. T. Furukawa, Y. Inagaki, and M. Aritomi, J. Power Energy Syst. 4, 252–261 https://doi.org/10.1299/jpes.4.252 (2010).

    Article  Google Scholar 

  9. K.A. Habib, M.S. Damra, J.J. Saura, I. Cervera, and J. Bellés, Int. J. Corros. 2011, 1–10 https://doi.org/10.1155/2011/824676 (2011).

    Article  Google Scholar 

  10. C. Sun, J. Sun, Y. Wang, X. Lin, X. Li, X. Cheng, and H. Liu, Corros. Sci. 107, 193–203 https://doi.org/10.1016/j.corsci.2016.02.032 (2016).

    Article  Google Scholar 

  11. K.K. Aye, T.D. Nguyen, J. Zhang, and D.J. Young, Corros. Sci. 179, 109096 https://doi.org/10.1016/j.corsci.2020.109096 (2021).

    Article  Google Scholar 

  12. R.M. Bozorth, Ferromagnetism, (Wiley, 1978).

  13. A. Leary, V. Keylin, A. Devaraj, V. DeGeorge, P. Ohodnicki, and M.E. McHenry, J. Mater. Res. 31, 3089–3107 https://doi.org/10.1557/jmr.2016.324 (2016).

    Article  Google Scholar 

  14. D.L. Cocke, G. Liang, M. Owens, D.E. Halverson, and D.G. Naugle, Mater. Sci. Eng. 99, 497–500 https://doi.org/10.1016/0025-5416(88)90384-9 (1988).

    Article  Google Scholar 

  15. B. Pujilaksono, T. Jonsson, H. Heidari, M. Halvarsson, J.E. Svensson, and L.G. Johansson, Oxid. Met. 75, 183–207 https://doi.org/10.1007/s11085-010-9229-z (2011).

    Article  Google Scholar 

  16. A. Talaat, D.W. Greve, S. Tan, T. Paplham, K. Byerly, M.E. McHenry, and P.R. Ohodnicki Jr., Adv. Eng. Mater. 24, 2200208 https://doi.org/10.1002/adem.202200208 (2022).

    Article  Google Scholar 

  17. E.A. Theisen and S.J. Weinstein, J. Coat. Technol. Res. 19, 49–60 https://doi.org/10.1007/s11998-021-00503-y (2022).

    Article  Google Scholar 

  18. P. Ohodnicki, E.J. Kautz, A. Devaraj, Y. Yu, N. Aronhime, Y. Krimer, M.E. McHenry, and A. Leary, J. Mater. Res. 36, 105–113 https://doi.org/10.1557/s43578-020-00066-5 (2021).

    Article  Google Scholar 

  19. M. Naka, K. Hashimoto, and T. Masumoto, J. Non Crystall. Solids 30, 29–36 https://doi.org/10.1016/0022-3093(78)90053-4 (1978).

    Article  Google Scholar 

  20. A.L. Cabrera and M.B. Maple, Oxid. Met. 32, 207–224 https://doi.org/10.1007/BF00664799 (1989).

    Article  Google Scholar 

  21. Y. Gong, D.J. Young, P. Kontis, Y.L. Chiu, H. Larsson, A. Shin, J.M. Pearson, M.P. Moody, and R.C. Reed, Acta Materialia 130, 361–374 https://doi.org/10.1016/j.actamat.2017.02.034 (2017).

    Article  Google Scholar 

  22. X. Cheng, Z. Jiang, B.J. Monaghan, D. Wei, R.J. Longbottom, J. Zhao, J. Peng, M. Luo, L. Ma, S. Luo, and L. Jiang, Corros. Sci. 108, 11–22 https://doi.org/10.1016/j.corsci.2016.02.042 (2016).

    Article  Google Scholar 

  23. C. Wagner, J. Electrochem. Soc. 99, 369 https://doi.org/10.1149/1.2779605 (1952).

    Article  Google Scholar 

  24. T. Jonsson, B. Pujilaksono, S. Hallström, J. Ågren, J.E. Svensson, L.G. Johansson, and M. Halvarsson, Corros. Sci. 51, 1914–1924 https://doi.org/10.1016/j.corsci.2009.05.016 (2009).

    Article  Google Scholar 

  25. J. Ju, Z. Shen, M. Kang, J. Zhang, and J. Wang, Corros. Sci. 199, 110203 https://doi.org/10.1016/j.corsci.2022.110203 (2022).

    Article  Google Scholar 

  26. C. Yu, T.D. Nguyen, J. Zhang, and D.J. Young, Corros. Sci. 98, 516–529 https://doi.org/10.1016/j.corsci.2015.05.040 (2015).

    Article  Google Scholar 

  27. Z. Lv, H. Fu, J. Xing, Z. Huang, S. Ma, and Y. Hu, Corros. Sci. 108, 185–193 https://doi.org/10.1016/j.corsci.2016.03.002 (2016).

    Article  Google Scholar 

  28. K.T. Jacob and C.B. Alcock, Metall. Trans. B 6, 215–221 https://doi.org/10.1007/BF02913562 (1975).

    Article  Google Scholar 

  29. C. Kaplin and M. Brochu, Surf. Coat. Technol. 205, 4221–4227 https://doi.org/10.1016/j.surfcoat.2011.03.026 (2011).

    Article  Google Scholar 

  30. Y. Behnamian, A. Mostafaei, A. Kohandehghan, B. Zahiri, W. Zheng, D. Guzonas, M. Chmielus, W. Chen, and J.L. Luo, J. Supercrit. Fluids 127, 191–199 https://doi.org/10.1016/j.supflu.2017.03.022 (2017).

    Article  Google Scholar 

  31. L. Zheng, M. Zhang, R. Chellali, and J. Dong, Appl. Surf. Sci. 257, 9762–9767 https://doi.org/10.1016/j.apsusc.2011.06.005 (2011).

    Article  Google Scholar 

  32. A. Zahs, M. Spiegel, and H. Grabke, Mater. Corros. 50, 561–578 (1999).

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge funding through the NASA HOTTech program under Grant #80NSSC22K0415.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Ohodnicki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Noebe, R.D., Leary, A. et al. Corrosion Behavior of Fe81Cr19, Fe49Co49V2, and Co72Fe4Mn4Nb4Si2B14 Alloys in Simulated Venusian Environment. JOM 75, 5430–5438 (2023). https://doi.org/10.1007/s11837-023-06147-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06147-0

Navigation