Skip to main content
Log in

Microwave-Intensified Separation of Boron and Iron from Ludwigite Ore Based on Impedance Matching

  • Characterization of Interactions between Materials and External Fields
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Efficient separation of boron and iron from ludwigite ore has been achieved by developing a process consisting of low-temperature microwave reductive roasting, milling and leaching, and magnetic separation. To facilitate the separation, microwave reductive roasting was performed based on the design of core–shell composite pellets composed of ludwigite ore, renewable biomass-redrived biochar, and sodium carbonate, which took advantage of their differences in the microwave penetration depth and microwave reflection loss according to the rule of impedance matching. Under the optimal conditions of roasting temperature of 700°C and dwell time of 20 min, the metallized pellets with iron metallization degree of 89.8% were obtained for simultaneous milling and leaching, which produced a boron-rich leachate with boron leaching percentage of 83.9% and a direct reduced iron powder with total iron content of 90.1 wt.%, iron metallization degree of 94.2%, and iron recovery of 85.9% after magnetic separation of the leaching residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. R. Orhan, E. Aydoğmuş, S. Topuz, and H. Arslanoğlu, J. Build. Eng. 42, 103051 https://doi.org/10.1016/j.jobe.2021.103051 (2021).

    Article  Google Scholar 

  2. Z. Balta and E.B. Simsek, J. Alloy. Compd. 898, 162897 https://doi.org/10.1016/j.jallcom.2021.162897 (2021).

    Article  Google Scholar 

  3. M. Zhu, X. Zhou, H. Zhang, L. Wang, and H. Sun, Resour. Policy 82, 103542 https://doi.org/10.1016/j.resourpol.2023.103542 (2023).

    Article  Google Scholar 

  4. Boron Statistics and Information. https://www.usgs.gov/centers/national-minerals-information-center/boron-statistics-and-information. Accessed 2 May 2023

  5. R. Liu, X. Xue, X. Liu, D. Wang, F. Zha, and D. Huang, Bull. Chin. Ceram. Soc. 25, 102 https://doi.org/10.16552/j.cnki.issn1001-1625.2006.06.025 (2006).

    Article  Google Scholar 

  6. G. Wang, Q. Xue, and J. Wang, Thermochim. Acta 621, 90 https://doi.org/10.1016/j.tca.2015.10.013 (2015).

    Article  Google Scholar 

  7. J. An and X. Xue, J. Clean. Prod. 66, 121 https://doi.org/10.1016/j.jclepro.2013.10.020 (2014).

    Article  Google Scholar 

  8. S. Liu, C. Cui, and X. Zhang, ISIJ Int. 38(10), 1077 https://doi.org/10.2355/isijinternational.38.1077 (1998).

    Article  Google Scholar 

  9. Z. Yang, S. Liu, Z. Li, and X. Xue, J. Iron Steel Res. Int. 14(6), 32 https://doi.org/10.1016/S1006-706X(07)60086-7 (2007).

    Article  Google Scholar 

  10. G. Wang, J. Wang, Y. Ding, S. Ma, and Q. Xue, ISIJ Int. 52(1), 45 https://doi.org/10.2355/isijinternational.52.45 (2012).

    Article  Google Scholar 

  11. G. Li, B. Liang, M. Rao, Y. Zhang, and T. Jiang, Miner. Eng. 56, 57 https://doi.org/10.1016/j.mineng.2013.10.030 (2014).

    Article  Google Scholar 

  12. X. Zhu, C. Liu, Y. Wang, F. Wang, J. Gao, and L. Zhang, J. Mater. Res. Technol. 18, 882 https://doi.org/10.1016/j.jmrt.2022.03.024 (2022).

    Article  Google Scholar 

  13. L. Ye, Z. Peng, R. Tian, H. Tang, J. Zhang, M. Rao, and G. Li, Powder Technol. 410, 117848 https://doi.org/10.1016/j.powtec.2022.117848 (2022).

    Article  Google Scholar 

  14. The Paris Agreement, https://unfccc.int/process-and-meetings/the-paris-agreement/what-is-the-paris-agreement. Accessed 1 May 2023

  15. E. Singh, R. Mishra, A. Kumar, S.K. Shukla, S.L. Lo, and S. Kumar, Process Saf. Environ. Prot. 163, 585 https://doi.org/10.1016/j.psep.2022.05.056 (2022).

    Article  Google Scholar 

  16. L. Ye, Z. Peng, L. Wang, A. Anzulevich, I. Bychkov, D. Kalganov, H. Tang, M. Rao, G. Li, and T. Jiang, JOM 71, 3931 https://doi.org/10.1007/s11837-019-03766-4 (2019).

    Article  Google Scholar 

  17. M. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S.S. Lee, and Y.S. Ok, Chemosphere 99, 19 https://doi.org/10.1016/j.chemosphere.2013.10.071 (2014).

    Article  Google Scholar 

  18. L. Wang, Q. Quan, L. Zhang, L. Cheng, P. Lin, S. Pan, and Z. Zhong, J. Magn. Magn. Mater. 449, 385 https://doi.org/10.1016/j.jmmm.2017.10.067 (2018).

    Article  Google Scholar 

  19. Z. Peng and J.Y. Hwang, Int. Mater. Rev. 60(1), 30 https://doi.org/10.1179/1743280414y.0000000042 (2015).

    Article  Google Scholar 

  20. S.H. Jung and J.S. Kim, J. Anal. Appl. Pyrol. 107, 116 https://doi.org/10.1016/j.jaap.2014.02.011 (2014).

    Article  Google Scholar 

  21. L. Ye, Z. Peng, L. Wang, A. Anzulevich, I. Bychkov, H. Tang, M. Rao, Y. Zhang, G. Li, and T. Jiang, Powder Technol. 338, 365 https://doi.org/10.1016/j.powtec.2018.07.037 (2018).

    Article  Google Scholar 

  22. T. Jiang, Iron ore Agglomeration, Central South University Press, Changsha, China (2016).

    Google Scholar 

  23. Z. Peng, J.Y. Hwang, J. Mouris, R. Hutcheon, and X. Huang, ISIJ Int. 50(11), 1590 https://doi.org/10.2355/isijinternational.50.1590 (2010).

    Article  Google Scholar 

  24. P. Singh, V.K. Babbar, A. Razdan, R.K. Puri, and T.C. Goel, J. Appl. Phys. 87(9), 4362 https://doi.org/10.1063/1.373079 (2000).

    Article  Google Scholar 

  25. S.C. Khattoi and G.G. Roy, Trans. Indian Inst. Metals 68, 683 https://doi.org/10.1007/s12666-014-0498-0 (2015).

    Article  Google Scholar 

  26. S. Mishra and G.G. Roy, Metall. Mater. Trans. B 47, 2347 https://doi.org/10.1007/s11663-016-0666-1 (2016).

    Article  Google Scholar 

  27. X. Ye, S. Guo, W. Qu, L. Yang, T. Hu, S. Xu, L. Zhang, B. Liu, and Z. Zhang, J. Hazard. Mater. 366, 432 https://doi.org/10.1016/j.jhazmat.2018.12.024 (2009).

    Article  Google Scholar 

  28. M. Wang, Y. Duan, S. Liu, X. Li, and Z. Ji, J. Magn. Magn. Mater. 321, 3442 https://doi.org/10.1016/j.jmmm.2009.06.040 (2009).

    Article  Google Scholar 

  29. Y. He, R. Gong, and H. He, Funct. Mater. 35, 782 https://doi.org/10.3321/j.issn:1001-9731.2004.06.042 (2004).

    Article  Google Scholar 

  30. M.M. Breda and D.C.J.I. Parreiras, ISIJ Int. 41, 27https://doi.org/10.2355/isijinternational.41.Suppl_S27 (2001).

    Article  Google Scholar 

  31. Z. Su, J. Wang, S. Liu, Y. Zhang, and T. Jiang, Powder Technol. 407, 117694 https://doi.org/10.1016/j.powtec.2022.117694 (2022).

    Article  Google Scholar 

  32. Y. Li, J. Qu, G. Wei, and T. Qi, J. Iron Steel Res. Int. 23(2), 103 https://doi.org/10.1016/S1006-706X(16)30020-6 (2016).

    Article  Google Scholar 

  33. A.C. Ferrari, J. Robertson, A.C. Ferrari, and J. Robertson, Phil. Trans. R. Soc. A. 362(1824), 2477 https://doi.org/10.1098/rsta.2004.1452 (2004).

    Article  Google Scholar 

  34. G. Wang, Q. Xue, and J. Wang, Trans. Nonferrous Met. Soc. China 26(1), 282 https://doi.org/10.1016/S1003-6326(16)64116-X (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Key Research and Development Program of China under Grant 2020YFC1909800, the National Natural Science Foundation of China under Grant 72088101, and the Science and Technology Planning Project of Hunan Province, China, under Grant 2019RS2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Peng.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 662 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, L., Tian, R., Tang, H. et al. Microwave-Intensified Separation of Boron and Iron from Ludwigite Ore Based on Impedance Matching. JOM 75, 5149–5159 (2023). https://doi.org/10.1007/s11837-023-06137-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06137-2

Navigation