Skip to main content
Log in

The Effects of Mg and Si Contents on the Microstructure and Solidification Behavior of Dilute Al-Mg-Si-Fe Alloys

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effects of Mg and Si contents on the microstructure and solidification behavior of dilute Al-Mg-Si alloys with about 0.1 wt.% Fe impurities were investigated using optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDS), differential scanning calorimeter (DSC) and thermodynamic simulation. The results show that the grain size and secondary dendrite arm spacing of as-cast dilute Al-Mg-Si-Fe alloys decrease with the increase in Mg and Si content, and the grain size can be predicted using growth restriction factor Q. The increase in Mg content suppresses the transformation from α-AlFeSi to β-AlFeSi. However, the increase in Si content promotes α-AlFeSi converted to β-AlFeSi. In addition, the increase in either Mg or Si content decreases the melting point. The Mg/Si ratio can influence the formation of the eutectic structure as well as the type of Fe-bearing phase in it. The Fe-bearing phases in the eutectic structures of excess Mg and excess Si alloys are α-AlFeSi and β-AlFeSi, respectively. The results of thermodynamic simulation of solidification behavior are in good agreement with experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.N. Khangholi, M. Javidani, A. Maltais, and X.G. Chen, J. Mater. Res. 37, 670 https://doi.org/10.1557/s43578-022-00488-3 (2022).

    Article  Google Scholar 

  2. S. Karabay, Mater. Des. 27, 821 https://doi.org/10.1016/j.matdes.2005.06.005 (2006).

    Article  Google Scholar 

  3. X. Sauvage, E.V. Bobruk, M.Y. Murashkin, Y. Nasedkina, N.A. Enikeev, and R.Z. Valiev, Acta Mater. 98, 355 https://doi.org/10.1016/j.actamat.2015.07.039 (2015).

    Article  Google Scholar 

  4. S.N. Khangholi, M. Javidani, A. Maltais, and X.G. Chen, Mater. Sci. Eng. A. 820, 141538 https://doi.org/10.1016/j.msea.2021.141538 (2021).

    Article  Google Scholar 

  5. J.K. Sunde, C.D. Marioara, S. Wenner, and R. Holmestad, Mater. Charact. 176, 111073 https://doi.org/10.1016/j.matchar.2021.111073 (2021).

    Article  Google Scholar 

  6. G.K. Sigworth, Inter Metalcast. 8, 7 https://doi.org/10.1007/BF03355567 (2014).

    Article  Google Scholar 

  7. D. Shu, B. Sun, J. Mi, and P.S. Grant, Acta Mater. 59, 2135 https://doi.org/10.1016/j.actamat.2010.12.014 (2011).

    Article  Google Scholar 

  8. D.H. StJohn, M. Qian, M.A. Easton, and P. Cao, Acta Mater. 59, 4907 https://doi.org/10.1016/j.actamat.2011.04.035 (2011).

    Article  Google Scholar 

  9. Y. Birol, Mater. Sci. Tech. 28, 924 https://doi.org/10.1179/1743284712Y.0000000024 (2012).

    Article  Google Scholar 

  10. Z.T. Liu, C. Wang, Q. Luo, J. You, X.L. Zhou, J. Xu, Y.T. Mo, J.W. Song, M. Zha, and H.Y. Wang, Materialia 13, 100850 https://doi.org/10.1016/j.mtla.2020.100850 (2020).

    Article  Google Scholar 

  11. Q. Li, F. Qiu, B.X. Dong, H.Y. Yang, S.L. Shu, M. Zha, and Q.C. Jiang, Mater. Sci. Eng. A. 798, 140247 https://doi.org/10.1016/j.msea.2020.140247 (2020).

    Article  Google Scholar 

  12. A.W. Shah, S.H. Ha, B.H. Kim, Y.O. Yoon, H.K. Lim, and S.K. Kim, Metall. Mater. Trans. A 51, 6670 https://doi.org/10.1007/s11661-020-06052-0 (2020).

    Article  Google Scholar 

  13. V.E. Bazhenov, and M.A. Magura, Mater. Sci. Technol. https://doi.org/10.1080/02670836.2018.1425237 (2018).

    Article  Google Scholar 

  14. X.X. Dong, and S.X. Ji, J. Mater. Sci. 53, 7778 https://doi.org/10.1007/s10853-018-2022-0 (2018).

    Article  Google Scholar 

  15. L.A. Tarshis, J.L. Walker, and J.W. Rutter, Metall. Trans. 2, 2589 https://doi.org/10.1007/BF02814899 (1971).

    Article  Google Scholar 

  16. M. Johnsson, Thermochim. Acta. 256, 107 https://doi.org/10.1016/0040-6031(94)02167-M (1995).

    Article  Google Scholar 

  17. H. Xu, L.D. Xu, S.J. Zhang, and Q. Han, Scr. Mater. 54, 2191 https://doi.org/10.1016/j.scriptamat.2006.02.035 (2006).

    Article  Google Scholar 

  18. F. Hodaj, and F. Durand, Acta Mater. 45, 2121 https://doi.org/10.1016/S1359-6454(96)00304-7 (1997).

    Article  Google Scholar 

  19. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, and D.J. Bristow, Acta Mater. 48, 2823 https://doi.org/10.1016/S1359-6454(00)00094-X (2000).

    Article  Google Scholar 

  20. F. Wang, Y.-L. Chiu, D. Eskin, W.J. Du, and P.R. Shearing, Mater. Charact. 181, 111468 https://doi.org/10.1016/j.matchar.2021.111468 (2021).

    Article  Google Scholar 

  21. Z. Fan, F. Gao, Y. Wang, H. Men, and L. Zhou, Prog. Mater. Sci. 123, 100809 https://doi.org/10.1016/j.pmatsci.2021.100809 (2022).

    Article  Google Scholar 

  22. Q.Y. Han, J. Magnes. Alloy. 10, 1846 https://doi.org/10.1016/j.jma.2022.01.013 (2022).

    Article  Google Scholar 

  23. N.A. Belov, D.G. Eskin, and A.A. Aksenov, Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys (Elsevier, Netherlands, 2005), pp47–82.

    Book  Google Scholar 

  24. L. Zhu, M.X. Guo, and J.S. Zhang, Mater. Sci. Eng. A. 826, 142013 https://doi.org/10.1016/j.msea.2021.142013 (2021).

    Article  Google Scholar 

  25. X.J. Yan, Y.D. Sui, H. Zhou, W.W. Sun, Y.H. Jiang, and Q.D. Wang, J. Mater. Res. Technol. 23, 3880 https://doi.org/10.1016/j.jmrt.2023.02.046 (2023).

    Article  Google Scholar 

  26. L. Sweet, S.M. Zhu, S.X. Gao, J.A. Taylor, and M.A. Easton, Metall. Mater. Trans. A. 42, 1737 https://doi.org/10.1007/s11661-010-0595-6 (2011).

    Article  Google Scholar 

  27. S.X. Ji, W.C. Yang, F. Gao, D. Watson, and Z.Y. Fan, Mater. Sci. Eng. A. 564, 130 https://doi.org/10.1016/j.msea.2012.11.095 (2013).

    Article  Google Scholar 

  28. M.S. Remøe, K. Marthinsen, I. Westermann, K. Pedersen, J. Røyset, and C. Marioara, Mater. Sci. Eng. A. 693, 60 https://doi.org/10.1016/j.msea.2017.03.078 (2017).

    Article  Google Scholar 

  29. X. Liu, C. Wang, S.Y. Zhang, J.W. Song, X.L. Zhou, M. Zha, and H.Y. Wang, J. Alloys. Compd. 886, 161202 https://doi.org/10.1016/j.jallcom.2021.161202 (2021).

    Article  Google Scholar 

  30. A. Verma, S. Kumar, P.S. Grant, and K.A.Q. O’Reilly, J. Alloys. Compd. 555, 274 https://doi.org/10.1016/j.jallcom.2012.12.077 (2013).

    Article  Google Scholar 

  31. J. Mathew, G. Remy, M.A. Williams, F.Z. Tang, and P. Srirangam, JOM. 71, 4362 https://doi.org/10.1007/s11837-019-03444-5 (2019).

    Article  Google Scholar 

  32. R. Krendelsberger, P. Rogl, A. Leithe-Jasper, and C.J. Simensen, 264, 236 (1998). https://doi.org/10.1016/S0925-8388(97)00275-2

  33. G. Sha, K.A.Q. O’Reilly, and B. Cantor, Mater. Sci. Forum. 519, 1721 https://doi.org/10.4028/www.scientific.net/MSF.519-521.1721 (2006).

    Article  Google Scholar 

  34. G.W.H. Höhne, W. Hemminger, and H.-J. Flammersheim, Differential Scanning Calorimetry: An Introduction for Practitioners (Springer, New York, 1996), pp21–38.

    Google Scholar 

  35. V.A. Drebushchak, J. Therm. Anal. Calorim. 109, 545 https://doi.org/10.1007/s10973-012-2216-7 (2012).

    Article  Google Scholar 

  36. J. Schawe, Mettler-Toledo UserCom. 23, 6 (2006).

    Google Scholar 

  37. M.A. Easton, and D.H. StJohn, Acta Mater. 49, 1867 https://doi.org/10.1016/S1359-6454(00)00368-2 (2001).

    Article  Google Scholar 

  38. M. Easton, and D. StJohn, Metall. Mater. Trans. A. 30, 1613 https://doi.org/10.1007/s11661-999-0098-5 (1999).

    Article  Google Scholar 

  39. Z.W. Chen, Z. He, and W.Q. Jie, Trans. Nonferrous. Met. Soc. China. 19, 410 https://doi.org/10.1016/S1003-6326(08)60287-3 (2009).

    Article  Google Scholar 

  40. L.J. Jing, T. Lu, and Y. Pan, JOM. 72, 3725 https://doi.org/10.1007/s11837-019-03970-2 (2019).

    Article  Google Scholar 

  41. D.Y. Zhang, D. Qiu, M.A. Gibson, Y.F. Zheng, H.L. Fraser, D.H. StJohn, and M.A. Easton, Nature 576, 91 https://doi.org/10.1038/s41586-019-1783-1 (2019).

    Article  Google Scholar 

  42. M. Easton, C. Davidson, and D. StJohn, Metall. Mater. Trans. A 41, 1528 https://doi.org/10.1007/s11661-010-0183-9 (2010).

    Article  Google Scholar 

  43. H.-J. Diepers, C. Beckermann, and I. Steinbach, Acta Mater. 47, 3663 https://doi.org/10.1016/S1359-6454(99)00239-6 (1999).

    Article  Google Scholar 

  44. M. Rappaz, and W.J. Boettinger, Acta Mater. 47, 3205 https://doi.org/10.1016/S1359-6454(99)00188-3 (1999).

    Article  Google Scholar 

  45. A.D. Pelton, Phase Diagrams and Thermodynamic Modeling of Solutions (Elsevier, Netherlands, 2018), pp133–148.

    Google Scholar 

  46. H.L. Chen, Q. Chen, Y. Du, J. Bratberg, and A. Engström, Trans. Nonferrous. Met. Soc. China. 24, 2041 https://doi.org/10.1016/S1003-6326(14)63310-0 (2014).

    Article  Google Scholar 

  47. C.M. Allen, K.A.Q. O’Reilly, B. Cantor, and P.V. Evans, Prog. Mater. Sci. 43, 89 https://doi.org/10.1016/S0079-6425(98)00003-6 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by State Grid Corporation of China (Grant No. 5500-202128250A-0-0-00). The authors thank Dr. Shuhong Liu from State Key Laboratory for Powder Metallurgy, Central South University, for her help in thermodynamic calculation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongying Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, D., Li, H., Yang, C. et al. The Effects of Mg and Si Contents on the Microstructure and Solidification Behavior of Dilute Al-Mg-Si-Fe Alloys. JOM 75, 4845–4857 (2023). https://doi.org/10.1007/s11837-023-06128-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06128-3

Navigation