Skip to main content
Log in

Influences of the Residual Water of Kaolin on the Structure and Properties of Phosphate Acid-Activated Metakaolin-Based Geopolymers

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Phosphate acid-activated geopolymers were synthesized through the reaction of metakaolin (MK) and phosphoric acid solution. The MK was obtained by calcining kaolin at 850°C for various holding times. The research found that the residual water in MK due to the differences in calcining time played a significant role in the development of geopolymerization of phosphate acid-activated metakaolin-based geopolymers (MKPGs). There was a critical value of the amount of the residual water required to induce the geopolymeric reaction. The compressive strength of MKPG specimens increased with the dehydroxylation of kaolin, and reached a maximum of 107.9 MPa as the residual water content decreased to 1.20% in MK. As the residual water was further dehydroxylated, an ordered phase was formed, and the compressive strength of MKPGs gradually decreased with the extension of the holding time. The measured losses of mass in MKPG specimens showed that the decrease of the residual water led to the increased adsorption of water, thus promoting geopolymerization. After the maximum strength was achieved, the amount of adsorbed water in MKPG specimens was not significantly different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Davidovits, J. Mater. Educ. 16, 91 (1994).

    Google Scholar 

  2. X.M. Cui, L.P. Liu, Y. He, J.Y. Chen, and Z. Ji, Mater. Chem. Phys. 130, 1 (2011).

    Article  Google Scholar 

  3. M. Zribi, B. Samet, and S. Baklouti, J. Non-Cryst. Solids 511, 62 (2019).

    Article  Google Scholar 

  4. D.G. Cao, D.G. Su, B. Lu, and Y.X. Yang, J. Chin. Ceram. Soc. 33, 1385 (2005).

    Google Scholar 

  5. D.S. Perera, J.V. Hanna, J. Davis, M.G. Blackford, B.A. Latella, Y. Sasaki, and E.R. Vance, J. Mater. Sci. 43, 6562 (2008).

    Article  Google Scholar 

  6. H. Douiri, S. Louati, S. Baklouti, M. Arous, and Z. Fakhfakh, Mater. Lett. 164, 299 (2016).

    Article  Google Scholar 

  7. S. Samal, N.P. Thanh, B. Marvalova, and I. Petrikova, JOM 69, 2480 (2017).

    Article  Google Scholar 

  8. H. Douiri, S. Louati, S. Baklouti, M. Arous, and Z. Fakhfakh, Mater. Lett. 116, 9 (2014).

    Article  Google Scholar 

  9. S. Sperinck, P. Raiteri, N. Marks, and K. Wright, J. Mater. Chem. 21, 2118 (2011).

    Article  Google Scholar 

  10. D.G. Cao, D.G. Su, Z.Y. Yang, and G.S. Song, Acta Mineral. Sin. 24, 366 (2004).

    Google Scholar 

  11. A.S. Wagh, Chemically Bonded Phosphate Ceramics (Elsevier Science Publishing, New York, 2004).

    Google Scholar 

  12. Y. He, L. Liu, L. He, and X. Cui, Ceram. Int. 42, 10908 (2016).

    Article  Google Scholar 

  13. H.K. Tchakouté, C.H. Rüscher, E. Kamseu, F. Andreola, and C. Leonelli, Appl. Clay Sci. 147, 184 (2017).

    Article  Google Scholar 

  14. E. Gasparini, S.C. Tarantino, P. Ghigna, M.P. Riccardi, E.I. Cedillo-Gonzalez, C. Siligardi, and M. Zema, Appl. Clay Sci. 80, 417 (2013).

    Article  Google Scholar 

  15. V. Mathivet, J. Jouin, M. Parlier, and S. Rossignol, Mater. Chem. Phys. 258, 123867 (2020).

    Article  Google Scholar 

  16. H. Lin, H. Liu, Y. Li, and X. Kong, Cem. Concr. Res. 144, 106425 (2021).

    Article  Google Scholar 

  17. H.K. Tchakouté and C.H. Rüscher, Appl. Clay Sci. 140, 81 (2017).

    Article  Google Scholar 

  18. C. Pesquera, F. González, I. Benito, C. Blanco, S. Mendioroz, and J. Pajares, J. Mater. Chem. 2(9), 907 (1992).

    Article  Google Scholar 

  19. M. Rokita, M. Handke, and W. Mozgawa, J. Mol. Struct. 555, 351 (2000).

    Article  Google Scholar 

  20. S. Louati, S. Baklouti, and B. Samet, Adv. Mater. Sci. Eng. 2016, 1 (2016).

    Article  Google Scholar 

  21. S. Louati, W. Hajjaji, S. Baklouti, and B. Samet, Appl. Clay Sci. 101, 60 (2014).

    Article  Google Scholar 

  22. B. Zhang, H.Z. Guo, P. Yuan, L.L. Deng, X.M. Zhong, Y. Li, Q. Wang, and D. Liu, Cem. Concr. Compos. 110, 103601 (2020).

    Article  Google Scholar 

  23. S. Louati, S. Baklouti, and B. Samet, Appl. Clay Sci. 132, 571 (2016).

    Article  Google Scholar 

  24. H. Celerier, J. Jouin, V. Mathivet, N. Tessier-Doyen, and S. Rossignol, J. Non-Cryst. Solids 493, 94 (2018).

    Article  Google Scholar 

  25. M. Zribi, B. Samet, and S. Baklouti, J. Solid State Chem. 281, 121025 (2020).

    Article  Google Scholar 

  26. M. Zribi, and S. Baklouti, J. Non-Cryst. Solids 562, 120777 (2021).

    Google Scholar 

  27. V. Mathivet, J. Jouin, A. Gharzouni, I. Sobrados, H. Celerier, S. Rossignol, and M. Parlier, J. Non-Cryst. Solids 512, 90 (2019).

    Article  Google Scholar 

  28. Q. Tian, X. Yu, Y. Sui, L. Xu, and Z. Lv, Ceram. Silik 66, 236 (2022).

    Article  Google Scholar 

  29. H.K. Tchakouté, C.H. Rüscher, E. Kamseu, J.N.Y. Djobo, and C. Leonelli, Mater. Chem. Phys. 199, 280 (2017).

    Article  Google Scholar 

  30. M. Khabbouchi, K. Hosni, M. Mezni, C. Zanelli, M. Doggy, M. Dondi, and E. Srasra, Appl. Clay Sci. 146, 510 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yu, X., Gao, W. et al. Influences of the Residual Water of Kaolin on the Structure and Properties of Phosphate Acid-Activated Metakaolin-Based Geopolymers. JOM 75, 4881–4886 (2023). https://doi.org/10.1007/s11837-023-06097-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06097-7

Navigation