Skip to main content
Log in

Phase Formation of a C6 Niobium Hemicarbide from Sub-stoichiometric NbC

  • Phase Stability in Extreme Environments
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The niobium hemicarbide (Nb2C) has at least three known polymorphs: α (Pnma or Pbcn), β (P\(\overline{3}1\mathrm{m })\), and γ (P63/mmc) as a function of temperature. Identification of these phases has been notoriously difficult particularly for the lower-temperature variations (α and β) because of their long-range vacancy ordering. In the current study, an overall Nb2C composition has been processed by hot isostatically pressing NbC and Nb powders together which did not fully homogenize. Using neutron diffraction and selected area electron diffraction, the C6 (P\(\overline{3}\mathrm{m }1\)) structure was identified in the Nb2C. The formation pathway for this phase is postulated from the high density of stacking faults observed in the NbC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.H. Jack, and K.H. Jack, Mater. Sci. Eng. 11(1), 1 https://doi.org/10.1016/0025-5416(73)90055-4 (1973).

    Article  MathSciNet  Google Scholar 

  2. E.K. Storms, and N.H. Krikorian, J. Phys. Chem. 64(10), 1471 https://doi.org/10.1021/j100839a029 (1960).

    Article  Google Scholar 

  3. E. Rudy, S. Windisch, and C.E. Brukl, Planseeber. Für Pulvermet. 16, 3 (1968).

    Google Scholar 

  4. C.R. Weinberger, and G.B. Thompson, J. Am. Ceram. Soc. 101(10), 4401 https://doi.org/10.1111/jace.15768 (2018).

    Article  Google Scholar 

  5. L. Wu, Y. Wang, Z. Yan, J. Zhang, F. Xiao, and B. Liao, J. Alloy. Compd. 561, 220 https://doi.org/10.1016/j.jallcom.2013.01.200 (2013).

    Article  Google Scholar 

  6. J.P. Landesman, A.N. Christensen, C.H. de Novion, N. Lorenzelli, and P. Convert, J. Phys. C Solid State Phys. 18, 809 https://doi.org/10.1088/0022-3719/18/4/012 (1985).

    Article  Google Scholar 

  7. A.I. Gusev, and A.A. Rempel’, Fizika Tverdogo Tela. 26, 3622 (1984).

    Google Scholar 

  8. S.I. Alyamovskii, G.P. Shveikin, P.V. Geld, and N.M. Volkova, Russ. J. Inorg. Chem. 12, 301 (1967).

    Google Scholar 

  9. X.X. Yu, C.R. Weinberger, and G.B. Thompson, Comput. Mater. Sci. 112, 318 https://doi.org/10.1016/j.commatsci.2015.10.038 (2016).

    Article  Google Scholar 

  10. S.S. Ordan’yan, A.I. Avgustinik, and L.V. Kudryasheva, Soviet Powder Metall. Metal. Ceram. 7, 612 https://doi.org/10.1007/BF00780218 (1968).

    Article  Google Scholar 

  11. C.R. Weinberger, and G.B. Thompson, Acta Cryst. 75, 870 https://doi.org/10.1107/S2052520619011302 (2019).

    Article  Google Scholar 

  12. H. Wiesenberger, W. Lengauer, and P. Ettmayer, Acta Mater. 46, 651 https://doi.org/10.1016/S1359-6454(97)00204-8 (1998).

    Article  Google Scholar 

  13. X. Sha, N. Xiao, Y. Guan, and X. Yi, RSC Adv. 7, 33402 https://doi.org/10.1039/c7ra05856j (2017).

    Article  Google Scholar 

  14. E. Rudy, and C.E. Brukl, J. Am. Ceram. Soc. 50, 265 https://doi.org/10.1111/j.1151-2916.1967.tb15101.x (1967).

    Article  Google Scholar 

  15. M. Uz, and R.H. Titran, AIP Conf. Proc. 271(1), 69https://doi.org/10.1063/1.43076 (2008).

    Article  Google Scholar 

  16. B. Vishwanadh, K.V.M. Krishna, A. Upadhyay, R. Banerjee, A. Arya, R. Tewari, H.L. Fraser, and G.K. Dey, Acta Mater. 108, 186 https://doi.org/10.1016/j.actamat.2016.02.036 (2016).

    Article  Google Scholar 

  17. B. Vishwanadh, T.S.R.C. Murthy, A. Arya, R. Tewari, and G.K. Dey, J. Alloy. Compd. 671, 424https://doi.org/10.1016/j.jallcom.2016.02.092 (2016).

    Article  Google Scholar 

  18. B. Lönnberg, and T. Lundström, J. Less-Common Metals. 113(2), 261https://doi.org/10.1016/0022-5088(85)90284-X (1985).

    Article  Google Scholar 

  19. T. Epicier, J. Dubois, C. Esnouf, G. Fantozzi, and P. Convert, Physica B 156–157, 44https://doi.org/10.1016/0921-4526(89)90581-4 (1989).

    Article  Google Scholar 

  20. C.J. Smith, C.R. Weinberger, and G.B. Thompson, J. Eur. Ceram. Soc. 38(15), 4850https://doi.org/10.1016/j.jeurceramsoc.2018.06.041 (2018).

    Article  Google Scholar 

  21. Y. Zhou, T.W. Heitmann, E. Bohannan, J.C. Schaeperkoetter, W.G. Fahrenholtz, and G.E. Hilmas, J. Am. Ceram. Soc. 103, 2891 https://doi.org/10.1111/jace.16964 (2020).

    Article  Google Scholar 

  22. V. Moisy-Maurice, C.H. de Novion, A.N. Christensen, and W. Just, Solid State Commun. 39, 661 https://doi.org/10.1016/0038-1098(81)90345-8 (1981).

    Article  Google Scholar 

  23. J. Mayer, L.A. Giannuzzi, T. Kamino, and J. Michael, MRS Bull. 32(5), 400 https://doi.org/10.1557/mrs2007.63 (2007).

    Article  Google Scholar 

  24. J. Rodríguez-Carvajal, IUCr. Newsl. 26, 12 (2001).

    Google Scholar 

  25. G. Kresse, and J. Hafner, Am. Phys. Soc. 47(1), 558 https://doi.org/10.1103/PhysRevB.47.558 (1993).

    Article  Google Scholar 

  26. G. Kresse, and J. Furthmüller, Am. Phys. Soc. 54(16), 11169 https://doi.org/10.1103/PhysRevB.54.11169 (1996).

    Article  Google Scholar 

  27. P.E. Blöchl, Am. Phys. Soc. 50(24), 17953 https://doi.org/10.1103/PhysRevB.50.17953 (1994).

    Article  Google Scholar 

  28. G. Kresse, and D. Joubert, Phys. Rev. B 59, 1758 https://doi.org/10.1103/PhysRevB.59.1758 (1999).

    Article  Google Scholar 

  29. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 https://doi.org/10.1103/PhysRevLett.77.3865 (1996).

    Article  Google Scholar 

  30. D. Rechenbach, and H. Jacobs, J. Alloy. Compd. 235(1), 15https://doi.org/10.1016/0925-8388(95)02097-7 (1996).

    Article  Google Scholar 

  31. K. Yvon, H. Nowotny, and R. Kieffer, Monatshefte für Chemie und verwandte Teile anderer Wissenschaften 98(1), 34 https://doi.org/10.1007/BF00901093 (1967).

    Article  Google Scholar 

  32. E. Rudy, F. Benesovsky, and K. Sedlatschek, Monatshefte für Chemie und verwandte Teile anderer Wissenschaften 92(4), 841 https://doi.org/10.1007/BF01187680 (1961).

    Article  Google Scholar 

  33. A.V. Skripov, H. Wu, T.J. Udovic, Q. Huang, and R. Hempelmann, J. Alloy. Compd. 478(1), 68 https://doi.org/10.1016/j.jallcom.2008.12.012 (2009).

    Article  Google Scholar 

  34. C.J. Howard, B.J. Kennedy, and C. Curfs, Phys. Rev. B 72(21), 214114https://doi.org/10.1103/PhysRevB.72.214114 (2005).

    Article  Google Scholar 

  35. K. Yvon, and E. Parthé, Acta Crystallogr. B 26(2), 149https://doi.org/10.1107/s0567740870002091 (1970).

    Article  Google Scholar 

  36. K. Nakamura, and M. Yashima, Mater. Sci. Eng., B 148(1), 69https://doi.org/10.1016/j.mseb.2007.09.040 (2008).

    Article  Google Scholar 

  37. H.G. Schimmel, J. Huot, L.C. Chapon, F.D. Tichelaar, and F.M. Mulder, J. Am. Chem. Soc. 127(41), 14348 https://doi.org/10.1021/ja051508a (2005).

    Article  Google Scholar 

  38. W.G. Fahrenholtz, E.J. Wuchina, W.E. Lee, Y. Zhou, editors. Ultra-High Tempeature Ceramics: Materials for Extreme Environment Applications, The American Ceramic Society, (2014). https://doi.org/10.1002/9781118700853.

  39. X.X. Yu, C.R. Weinberger, and G.B. Thompson, Acta Mater. 80, 341 https://doi.org/10.1016/j.actamat.2014.07.070 (2014).

    Article  Google Scholar 

  40. N. De Leon, B. Wang, C.R. Weinberger, L.E. Matson, and G.B. Thompson, Acta Mater. 61(11), 3905 https://doi.org/10.1016/j.actamat.2013.01.043 (2013).

    Article  Google Scholar 

  41. B. Wang, N. De Leon, C.R. Weinberger, and G.B. Thompson, Acta Mater. 61(11), 3914 https://doi.org/10.1016/j.actamat.2013.01.047 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

G.B. T. recognizes NSF-DMR-2026760 and C.R.W. recognizes NSF-DMR-2026766 for support of this research. Stephen DiPeitro is thanked for the niobium hemicarbide sample. This research used resources at the Missouri University Research Reactor (MURR).

Author information

Authors and Affiliations

Authors

Contributions

IB performed the electron microscopy and provided the first draft. JLP provided data analysis of the neutron diffraction data set. LDS also provided data analysis as well as performed neutron diffraction. CRW conducted the DFT simulations. CRW and GBT conceptualized the project, and provided technical direction and edits to the manuscript.

Corresponding author

Correspondence to Gregory B. Thompson.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Fig.

Figure 6
figure 6

Illustration of the method to achieve the combined (predicted * experiment) peaks. The predicted reflections are calculated using known mathematical relationships for diffraction from crystal structures. Those reflections are replaced by Gaussian normal distributions, to achieve the predicted peaks. Then, the predicted and experimental peaks curves are multiplied (element wise) and normalized to yield the combined peaks curve.

6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bikmukhametov, I., Priedeman, J.L., Sanjeewa, L.D. et al. Phase Formation of a C6 Niobium Hemicarbide from Sub-stoichiometric NbC. JOM 75, 4626–4635 (2023). https://doi.org/10.1007/s11837-023-06084-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06084-y

Navigation