Skip to main content
Log in

Bi Dispersion Hardening in Sn-Bi Alloys by Solid-State Aging

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, Bi was added to pure Sn to improve its strength and thermal properties. The presence of 2.5 and 5 wt.% Bi in the Sn matrix lowered the melting point of Sn from 232°C to 229°C and 225°C, respectively. The hardness was improved by increasing the Bi content; 2.5 wt.% Bi caused solid-solution hardening, whereas 5 wt.% Bi caused solid-solution, fine-grain, and Bi precipitation hardening. Sn with 5 wt.% Bi was reinforced by aging, which was attributed to dispersion hardening by Bi redistribution in the Sn matrix, and possessed good wettability on Cu. This study demonstrated that Sn with 5 wt.% Bi with good wettability has a good melting point, excellent hardness, and aging enhancement compared to pure Sn. Thus, this study provides mechanistic insights into the hardening of Sn-Bi alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data Availability

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. K.N. Tu, Microelectron. Reliab. 51, 517 https://doi.org/10.1016/J.MICROREL.2010.09.031 (2011).

    Article  Google Scholar 

  2. J.H. Lau, FOWLP: PoP Fan-Out Wafer-Level Packaging (Springer, Singapore, 2018), pp207–216.

    Google Scholar 

  3. H. Wang, X. Hu, and X. Jiang, Mater. Charact. 163, 110287 https://doi.org/10.1016/J.MATCHAR.2020.110287 (2020).

    Article  Google Scholar 

  4. K. Xu, X. Fu, X. Wang, Z. Fu, X. Yang, S. Chen, Y. Shi, Y. Huang, and H. Chen, Materials 15, 108 https://doi.org/10.3390/MA15010108 (2021).

    Article  Google Scholar 

  5. Y.-A. Shen and J.A. Wu, Materials 15, 5086 https://doi.org/10.3390/MA15145086 (2022).

    Article  Google Scholar 

  6. Y. Li, X. Ren, S. Chen, Y. Qiao, and N. Zhao, J. Mater. Sci. 57, 4369 https://doi.org/10.1007/S10853-022-06918-1 (2022).

    Article  Google Scholar 

  7. P. Zhang, S. Xue, and J. Wang, Mater. Des. 192, 108726 https://doi.org/10.1016/j.matdes.2020.108726 (2020).

    Article  Google Scholar 

  8. L.S. Ramos, R.V. Reyes, L.F. Gomes, A. Garcia, J.E. Spinelli, and B.L. Silva, Mater. Sci. Eng. A 776, 138959 https://doi.org/10.1016/j.msea.2020.138959 (2020).

    Article  Google Scholar 

  9. J. Qiu, Y. Peng, P. Gao, and C. Li, Materials 14, 2335 https://doi.org/10.3390/MA14092335 (2021).

    Article  Google Scholar 

  10. Q. Xu, Y. Mei, X. Li, and G.Q. Lu, J. Alloys Compd. 675, 317 https://doi.org/10.1016/j.jallcom.2016.03.133 (2016).

    Article  Google Scholar 

  11. H. Gao, F. Wei, Y. Sui, and J. Qi, Mater. Des. 174, 107794 https://doi.org/10.1016/J.MATDES.2019.107794 (2019).

    Article  Google Scholar 

  12. W.H. Lin, A.T. Wu, S.Z. Lin, T.H. Chuang, and K.N. Tu, J. Electron. Mater. 36, 753 https://doi.org/10.1007/s11664-007-0139-z (2007).

    Article  Google Scholar 

  13. Z.L. Ma, C. Li, S.Y. Yang, and X.W. Cheng, Acta Mater. 194, 422 https://doi.org/10.1016/j.actamat.2020.04.059 (2020).

    Article  Google Scholar 

  14. M.B. Zhou, H.Q. Zhang, X.P. Zhang, and W. Yue, Shear strength and fracture behavior of locally-melted hybrid Cu/Sn3.0Ag0.5Cu/Sn58Bi/Cu joints under different loading rates. in 2019 20th International Conference Electronic Packaging Technology (ICEPT) (Institute of Electrical and Electronics Engineers Inc., 2019). https://doi.org/10.1109/ICEPT47577.2019.245207

  15. Y.-A. Shen, X.-M. Yang, C.-Y. Tsai, Y.-H. Ouyang, M.-H. Tsai, and T.-T. Shun, Intermetallics 144, 107530 https://doi.org/10.1016/J.INTERMET.2022.107530 (2022).

    Article  Google Scholar 

  16. G. Kim, K. Son, J.-H. Lee, Y.-C. Joo, and Y.-B. Park, Electron. Mater. Lett. 2022, 1 https://doi.org/10.1007/S13391-022-00356-6 (2022).

    Article  Google Scholar 

  17. M.J. Rizvi, C. Bailey, Y.C. Chan, and H. Lu, J. Alloys Compd. 438, 116 https://doi.org/10.1016/j.jallcom.2006.08.048 (2007).

    Article  Google Scholar 

  18. K. Zeng and K.N. Tu, Mater. Sci. Eng. R Rep. 38, 55 https://doi.org/10.1016/S0927-796X(02)00007-4 (2002).

    Article  Google Scholar 

  19. K.N. Tu, A.M. Gusak, and M. Li, J. Appl. Phys. 93, 1335 https://doi.org/10.1063/1.1517165 (2003).

    Article  Google Scholar 

  20. X. Chen, J. Zhou, F. Xue, and Y. Yao, Mater. Sci. Eng. A 662, 251 https://doi.org/10.1016/J.MSEA.2016.03.072 (2016).

    Article  Google Scholar 

  21. S. Zhou, C. Yang, S. Lin, A.N. AlHazaa, O. Mokhtari, X. Liu, and H. Nishikawa, Mater. Sci. Eng. A 744, 560 https://doi.org/10.1016/j.msea.2018.12.012 (2019).

    Article  Google Scholar 

  22. F. Iacoviello, T. Yang, Y. Chen, K. You, Z. Dong, Y. Jia, G. Wang, J. Peng, S. Cai, X. Luo, C. Liu, and J. Wang, Materials 15, 4727 https://doi.org/10.3390/MA15144727 (2022).

    Article  Google Scholar 

  23. J. Ren and M.L. Huang, Sci. Technol. Weld. Join. 26, 205 https://doi.org/10.1080/13621718.2021.1882147/FORMAT/EPUB (2021).

    Article  Google Scholar 

  24. J. Zhou, Y. Sun, and F. Xue, J. Alloys Compd. 397, 260 https://doi.org/10.1016/J.JALLCOM.2004.12.052 (2005).

    Article  Google Scholar 

  25. J.A. Wu, A. Luktuke, and N. Chawla, J. Electron. Mater. 52, 1 https://doi.org/10.1007/S11664-022-10126-7/METRICS (2022).

    Article  Google Scholar 

  26. S.A. Belyakov, J. Xian, G. Zeng, K. Sweatman, T. Nishimura, T. Akaiwa, and C.M. Gourlay, J. Mater. Sci. Mater. Electron. 30, 378 https://doi.org/10.1007/S10854-018-0302-8/FIGURES/13 (2019).

    Article  Google Scholar 

  27. Y.-A. Shen, H.-M. Hsieh, S.-H. Chen, J. Li, S.-W. Chen, and H. Nishikawa, Appl. Surf. Sci. 546, 148931 https://doi.org/10.1016/j.apsusc.2021.148931 (2021).

    Article  Google Scholar 

  28. H.Y. Zahran, H.N. Soliman, A.F. Abd El-Rehim, and D.M. Habashy, Crystals 11, 481 https://doi.org/10.3390/CRYST11050481 (2021).

    Article  Google Scholar 

  29. Y.-A. Shen, H.-Z. Chen, S.-W. Chen, S.-K. Chiu, X.-Y. Guo, and Y.-P. Hsieh, Appl. Surf. Sci. 578, 152108 https://doi.org/10.1016/J.APSUSC.2021.152108 (2022).

    Article  Google Scholar 

  30. Y.-A. Shen, S. Zhou, and H. Nishikawa, Materialia 6, 100309 https://doi.org/10.1016/J.MTLA.2019.100309 (2019).

    Article  Google Scholar 

  31. Z. Hou, X. Zhao, Y. Gu, C. Tan, Y. Huo, H. Li, S. Shi, and Y. Liu, Mater. Sci. Eng. A 848, 143445 https://doi.org/10.1016/J.MSEA.2022.143445 (2022).

    Article  Google Scholar 

  32. Y.A. Shen and Y.H. Ouyang, A study on strengthening mechanisms in Sn−0.7Cu via microstructural observation, elemental distribution, and grain-size analysis. in 2022 International Conference Electronics Packaging (ICEP) (Institute of Electrical and Electronics Engineers Inc., 2022), p. 41–42. https://doi.org/10.23919/ICEP55381.2022.9795497

  33. C.M. Lin, H.L. Tsai, and H.Y. Bor, Intermetallics 18, 1244 https://doi.org/10.1016/j.intermet.2010.03.030 (2010).

    Article  Google Scholar 

  34. E.M. Rebikov, V.V. Kashirtsev, V.V. Sosnin, and E.Y. Roshchupkina, Steel Transl. 51, 229 https://doi.org/10.3103/S0967091221030098/TABLES/4 (2021).

    Article  Google Scholar 

  35. E.W. Hart, Acta Metall. 20, 275 https://doi.org/10.1016/0001-6160(72)90190-3 (1972).

    Article  Google Scholar 

  36. Y. Tang, G.Y. Li, and Y.C. Pan, Mater. Des. 55, 574 https://doi.org/10.1016/j.matdes.2013.10.033 (2014).

    Article  Google Scholar 

  37. Z. Liu, L. Yang, K.J. Lu, Y.C. Zhang, Y.H. Xu, F. Xu, and H.M. Gao, J. Electron. Mater. 50, 3326 https://doi.org/10.1007/S11664-021-08844-5 (2021).

    Article  Google Scholar 

  38. Y.Z. Peng, C.J. Li, J.J. Yang, J.T. Zhang, J.B. Peng, G.J. Zhou, C.J. Pu, and J.H. Yi, Metals 11, 538 https://doi.org/10.3390/MET11040538 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

Yu-An Shen expresses gratitude to the National Science and Technology Council of Taiwan for their support under Project NSTC 111-2221-E-035-054. The author also acknowledges the support from the Ultra HR SEM at the National Yang Ming Chiao Tung University Instrument Resource Center (EM002800) under Project MOST 111-2731-M-A49-001, the EPMA (EPMA000100) of The Center for High-Value Instrumentation at National Sun Yat-sen University under Project NSTC112-2740-M-110-002, and the Precision Instrument Support Center and all administration teams of Feng Chia University. The simulations presented in this paper were performed using Pandat software and released databases, and the authors express their gratitude to CompuTherm for providing the simulation tools. YA Shen also thanks the undergraduate students of his affiliation for laying out a few preliminary research directions for this study.

Funding

National Science and Technology Council of Taiwan, NSTC (111-2221-E−035-054), Yu-An Shen, Ministry of Science and Technology of Taiwan, MOST (109-2222-E−035-008-MY2), Yu-An Shen.

Author information

Authors and Affiliations

Authors

Contributions

YAS—Conceptualization, Methodology, Validation, Formal analysis, investigation, data curation, validation, writing—original draft, writing—review and editing, visualization, supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to Yu-An Shen.

Ethics declarations

Conflict of interest

The author declares no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, YA. Bi Dispersion Hardening in Sn-Bi Alloys by Solid-State Aging. JOM 75, 4922–4930 (2023). https://doi.org/10.1007/s11837-023-06079-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06079-9

Navigation