Skip to main content

Advertisement

Log in

Detoxification and Extraction of Solid and Hazardous Wastes for the Preparation of Molecular Sieves

  • Recycling End of Life Products Containing Aluminium
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The discharge of industrial solid/hazardous wastes (such as aluminum dross, spent cathode carbon blocks, coal gangue, and carbide slag) causes potential environmental problems and wastes resources. An innovative method for preparing molecular sieves using varied solid/hazardous wastes is proposed. Aluminum dross is deeply denitrified to extract alumina source under a high concentration of sodium hydroxide. Denitrified aluminum dross, desilicated coal gangue, spent cathode carbon blocks, and carbide slag are synergistically reacted at high temperature to further extract alumina source. Alumina and silica sources are obtained via desilication of coal gangue which is used as raw materials to synthesize molecular sieve materials. The results show that the reaction rate of aluminum nitride in aluminum dross after leaching with high-concentration alkali solution reaches more than 99%, while the extraction rate of alumina reaches 40% (the extraction rate of alkali-soluble alumina is almost 100%). The highest sodium oxide recovery rate for various solid/hazardous wastes is 96.23%, and the alumina extraction rate is 95.2%. The molecular sieve prepared from silica and alumina sources has good crystallinity with an average particle size of 4.46 μm, a whiteness of 94.9, and a calcium exchange capacity of 310 mg/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. M.Z. Xie, H.L. Zhao, Z.G. Wu, W. Liu, R.B. Li, and F.Q. Liu, J. Sustain. Metall. 6, 715 https://doi.org/10.1007/s40831-020-00311-5 (2020).

    Article  Google Scholar 

  2. H. Lv, H.L. Zhao, Z.P. Zuo, R.B. Li, and F.Q. Liu, J. Mater. Res. Technol. 9, 9735 https://doi.org/10.1016/j.jmrt.2020.06.051 (2020).

    Article  Google Scholar 

  3. L. Chao, J.H. Wan, H.H. Sun, and L.T. Li, J. Hazard. Mater. 179, 515 https://doi.org/10.1016/j.jhazmat.2010.03.033 (2010).

    Article  Google Scholar 

  4. Y.J. Wang, B.F. Ye, Z.C. Hong, Y.H. Wang, and M.H. Liu, J. Clean. Prod. 253, 119930 https://doi.org/10.1016/j.jclepro.2019.119930 (2020).

    Article  Google Scholar 

  5. M. Mahinroosta, and A. Allahverdi, J. Environ. Manage. 223, 452 https://doi.org/10.1016/j.jenvman.2018.06.068 (2018).

    Article  Google Scholar 

  6. B.R. Das, B. Dash, B.C. Tripathy, I.N. Bhattacharya, and S.C. Das, Miner. Eng. 20, 252 https://doi.org/10.1016/j.mineng.2006.09.002 (2007).

    Article  Google Scholar 

  7. A. Meshram, and K.K. Singh, Resour. Conserv. Recycl. 130, 95108 https://doi.org/10.1016/j.resconrec.2017.11.026 (2018).

    Article  Google Scholar 

  8. Y.X. Guo, H.B. Lv, X. Yang, and F.Q. Cheng, Sep. Purif. Technol. 151, 177 https://doi.org/10.1016/j.seppur.2015.07.043 (2015).

    Article  Google Scholar 

  9. Y.X. Guo, K.Z. Yan, L. Cui, F.Q. Cheng, and H.H. Lou, Int. J. Miner. Process. 131, 51 https://doi.org/10.1016/j.minpro.2014.07.001 (2014).

    Article  Google Scholar 

  10. Y.X. Guo, K.Z. Yan, L. Cui, and F.Q. Cheng, Powder Technol. 302, 33 https://doi.org/10.1016/j.powtec.2016.08.034 (2016).

    Article  Google Scholar 

  11. Y.X. Guo, Q. Zhao, K.Z. Yan, F.Q. Cheng, and H.H. Lou, Ind. Eng. Chem. Res. 53, 4518 https://doi.org/10.1021/ie500295t (2014).

    Article  Google Scholar 

  12. X.J. Ren, J.P. Xia, and Z.S. Zhang, NonMet. Mines 35, 12 (2012).

    Google Scholar 

  13. X.L. Wang, and Y. Zhang, Sci. Adv. Mater. 11, 277 https://doi.org/10.1166/sam.2019.3468 (2019).

    Article  Google Scholar 

  14. J. Xiao, F.C. Li, Q.F. Zhong, H.G. Bao, B.J. Wang, J.D. Huang, and Y.B. Zhang, Hydrometallurgy 155, 118 https://doi.org/10.1016/j.hydromet.2015.04.018 (2015).

    Article  Google Scholar 

  15. J.M. Zhu, H.W. Cai, and N.N. Dang, Adv. Mat. Res. 997, 614 https://doi.org/10.4028/www.scientific.net/AMR.997.614 (2014).

    Article  Google Scholar 

  16. Y.Y. Teng, Y.F. Zhang, J. Bai, J.M. Shun, and L.X. Yang, Chem. Ind. Eng. Prog. 30, 456 https://doi.org/10.16085/j.issn.1000-6613.2011.02.003 (2011).

    Article  Google Scholar 

  17. Q.L. Ge, M. Moeen, Q. Tian, J.J. Xu, and K.Q. Feng, Sci. Pollut. Res. 27, 7398 https://doi.org/10.1007/s11356-019-07412-z (2020).

    Article  Google Scholar 

  18. F.Q. Liu, M.Z. Xie, G.Q. Yu, C.Y. Ke, and H.L. Zhao, ACS Sustain. Chem. Eng. 9, 10318 https://doi.org/10.1021/ACSSUSCHEMENG.1C03276 (2021).

    Article  Google Scholar 

  19. M.Z. Xie, F.Q. Liu, H.L. Zhao, C.Y. Ke, and Z.Q. Xu, J. Mater. Res. Technol. 14, 2281 https://doi.org/10.1016/J.JMRT.2021.07.129 (2021).

    Article  Google Scholar 

  20. M.Z. Xie, R.B. Li, H.L. Zhao, W. Liu, T.T. Lu, and F.Q. Liu, J. Clean. Prod. 249, 119370 https://doi.org/10.1016/j.jclepro.2019.119370 (2020).

    Article  Google Scholar 

  21. N. Li, L. Gao, K. Chattopadhyay. Migration behavior of fluorides in spent potlining during vacuum distillation method. Light Met. 2019, Part of the The Minerals, Metals & Materials Series book series (MMMS), Pittsburgh, pp 867–872.

  22. G. Hollywell, and R. Breault, JOM 65, 1441 https://doi.org/10.1007/s11837-013-0769-y (2013).

    Article  Google Scholar 

  23. X.D. Zhao, G.M. Xiang, C.Y. Ma, and C.H. Chen, Chem. Eng. 34, 59 https://doi.org/10.1016/S1872-2040(06)60041-8 (2006).

    Article  Google Scholar 

  24. X. Xin, Y.J. Li, W.J. Wang, and L. Shi, Appl. Energy 135, 391 https://doi.org/10.1016/j.apenergy.2014.08.098 (2014).

    Article  Google Scholar 

  25. Y.J. Li, H.L. Liu, R.Y. Sun, S.M. Wu, and C.M. Lu, J. Therm. Anal. Calorim. 110, 685 https://doi.org/10.1007/s10973-011-1901-2 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Program of China (2022YFC2904401).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengqin Liu or Hongliang Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 328 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, M., Liu, F. & Zhao, H. Detoxification and Extraction of Solid and Hazardous Wastes for the Preparation of Molecular Sieves. JOM 75, 4680–4688 (2023). https://doi.org/10.1007/s11837-023-06071-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06071-3

Navigation