Skip to main content
Log in

Probing the Mechanical Performance of Micro-architected Porous Structures Through In Situ Characterization and Analysis

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Micropores play critical roles in both natural and man-made materials. Such pores take on a variety of shapes and sizes ranging from spherical to irregular sphere-like voids with diameters spanning from the nanometer to millimeter scales. When porous structures are mechanically loaded, the pores direct the stress around their free surfaces, altering the material’s mechanical response relative to fully dense materials. In this study, for the first time, we create micro-architected porous samples using nanolithography and investigate the role of pore morphology by conducting a series of in situ micropillar compression tests in scanning electron microscopy. The findings demonstrate that porosity is the primary factor influencing the mechanical response of these micro-architected materials, as often seen on a macroscopic level. Additionally, we observed that pore geometry had a significant impact on Young’s modulus, yield stress, and strain energy density as a secondary parameter. Then, the extracted Young’s modulus was compared to macroscopic empirical models and determined the analytical models sufficiently described the impact of porosity in the microscopic scale but failed to capture the impact of second-order parameters. These results suggest how porous materials can be tailored to achieve desired mechanical properties based on the engineering applications of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Zhang, K. Cao, C. Wang, X. Wang, G. Deng, and P. Wei, Constr. Build. Mater.235, 117508 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117508

    Article  Google Scholar 

  2. L. Wu, Y. Li, Z. Fu, and B.L. Su, Natl. Sci. Rev. 7(11), 1667 (2020). https://doi.org/10.1093/nsr/nwaa183

    Article  Google Scholar 

  3. H. Mao, J. Tang, J. Chen, J. Wan, K. Hou, Y. Peng, D.M. Halat, L. Xiao, R. Zhang, and X. Lv et al., Sci. Adv. 6(41), eabb0694 (2020)

    Article  Google Scholar 

  4. K. Bertoldi, M.C. Boyce, S. Deschanel, S. Prange, and T. Mullin, J. Mech. Phys. Solids 56(8), 2642 (2008)

    Article  Google Scholar 

  5. T. Nakamura, G. Qian, and C.C. Berndt, J. Am. Ceram. Soc. 83(3), 578 (2000)

    Article  Google Scholar 

  6. J. Bauer, S. Hengsbach, I. Tesari, R. Schwaiger, and O. Kraft, Proc. Natl. Acad. Sci. 111(7), 2453 (2014)

    Article  Google Scholar 

  7. A.G. Slater and A.I. Cooper, Science 348(6238), aaa8075 (2015)

    Article  Google Scholar 

  8. J.T.B. Overvelde, S. Shan, and K. Bertoldi, Adv. Mater. 24(17), 2337 (2012)

    Article  Google Scholar 

  9. A.K. Landauer, X. Li, C. Franck, and D.L. Henann, J. Mech. Phys. Solids 133, 103701 (2019)

    Article  MathSciNet  Google Scholar 

  10. J. Poutet, D. Manzoni, F. Hage-Chehade, J.F. Thovert, and P. Adler, J. Mech. Phys. Solids 44(10), 1587 (1996)

    Article  Google Scholar 

  11. M.T. Hsieh, B. Endo, Y. Zhang, J. Bauer, and L. Valdevit, J. Mech. Phys. Solids 125, 401 (2019)

    Article  Google Scholar 

  12. H. Toda, T. Inamori, K. Horikawa, K. Uesugi, A. Takeuchi, Y. Suzuki, and M. Kobayashi, Mater. Trans. 54(12), 2195 (2013)

    Article  Google Scholar 

  13. J. Zhou, Y. Li, R. Zhu, and Z. Zhang, Mater. Sci. Eng. A 445, 717 (2007)

    Article  Google Scholar 

  14. W. Zhu, P. Baud, and T.F. Wong, J. Geophys. Res. Solid Earth (2010). https://doi.org/10.1029/2009JB006610

    Article  Google Scholar 

  15. A. Musa Abazari, S. Mohsen Safavi, G. Rezazadeh, and L. Guillermo Villanueva, Size effects on mechanical properties of micro/nano structures. arXiv e-prints, pp. arXiv–1508 (2015). arXiv:1508.01322

  16. A. Sydney Gladman, E.A. Matsumoto, R.G. Nuzzo, L. Mahadevan, and J.A. Lewis, Nat. Mater. 15(4), 413 (2016)

    Article  Google Scholar 

  17. C. Barner-Kowollik, M. Bastmeyer, E. Blasco, G. Delaittre, P. Müller, B. Richter, and M. Wegener, Angew. Chem. Int. Ed. 56(50), 15828 (2017)

    Article  Google Scholar 

  18. F. Zhang, M. Wei, V.V. Viswanathan, B. Swart, Y. Shao, G. Wu, and C. Zhou, Nano Energy 40, 418 (2017)

    Article  Google Scholar 

  19. L. Valdevit and J. Bauer, Fabrication of 3d micro-/nanoarchitected materials, in Three-Dimensional Microfabrication Using Two-Photon Polymerization. (Elsevier, Amsterdam, 2020), pp.541–576

    Chapter  Google Scholar 

  20. B.G. Compton and J.A. Lewis, Adv. Mater. 26(34), 5930 (2014)

    Article  Google Scholar 

  21. Z. Chen, M. Yang, M. Ji, X. Kuang, H.J. Qi, and T. Wang, Mater. Des. 197, 109189 (2021)

    Article  Google Scholar 

  22. X. Zhang, A. Vyatskikh, H. Gao, J.R. Greer, and X. Li, Proc. Natl. Acad. Sci. 116(14), 6665 (2019). https://doi.org/10.1073/pnas.1817309116

    Article  Google Scholar 

  23. H. Wörgötter, D. Kiener, J.M. Purswani, D. Gall, and G. Dehm, BHM Berg Hüttenmänn. Monatsh. 153(7), 257 (2008)

    Article  Google Scholar 

  24. J. Bauer, M. Sala-Casanovas, M. Amiri, and L. Valdevit, Sci. Adv. 8(33), eabo3080 (2022)

    Article  Google Scholar 

  25. L.R. Meza, A.J. Zelhofer, N. Clarke, A.J. Mateos, and D.M. Kochmann, J.R. Greer, Proc. Natl. Acad. Sci. 112(37), 11502 (2015)

    Article  Google Scholar 

  26. T. Mori and K. Tanaka, Acta Metall. 21(5), 571 (1973)

    Article  Google Scholar 

  27. Z. Hashin, J. Mech. Phys. Solids 36(6), 719 (1988)

    Article  MathSciNet  Google Scholar 

  28. J. Fish, K. Shek, M. Pandheeradi, and M.S. Shephard, Comput. Methods Appl. Mech. Eng.148(1–2), 53 (1997)

    Article  Google Scholar 

  29. S. Torquato, L. Gibiansky, M. Silva, and L. Gibson, Int. J. Mech. Sci. 40(1), 71 (1998)

    Article  Google Scholar 

  30. K. Terada, M. Kurumatani, T. Ushida, and N. Kikuchi, Comput. Mech. 46(2), 269 (2010)

    Article  MathSciNet  Google Scholar 

  31. T. Du, M. Blum, C. Chen, M.G. Muraleedharan, A.C. van Duin, and P. Newell, Eng. Fract. Mech. 250, 107749 (2021)

    Article  Google Scholar 

  32. T. Vo, B. He, M. Blum, A. Damone, and P. Newell, Comput. Mater. Sci. 183, 109881 (2020)

    Article  Google Scholar 

  33. B. Vazic, B.E. Abali, H. Yang, and P. Newell, Eng. Comput. 38(6), 1 (2021)

    Google Scholar 

  34. V. Espeseth, D. Morin, J. Faleskog, T. Børvik, and O.S. Hopperstad, J. Mech. Phys. Solids 157, 104493 (2021)

    Article  Google Scholar 

  35. N. Rohbeck, R. Ramachandramoorthy, D. Casari, P. Schürch, T.E. Edwards, L. Schilinsky, L. Philippe, J. Schwiedrzik, and J. Michler, Mater. Des. 195, 108977 (2020)

    Article  Google Scholar 

  36. J. Bauer, A. Guell Izard, Y. Zhang, T. Baldacchini, and L. Valdevit, Adv. Mater. Technol. 4(9), 1900146 (2019)

    Article  Google Scholar 

  37. J. Bauer, A. Schroer, R. Schwaiger, I. Tesari, C. Lange, L. Valdevit, and O. Kraft, Extreme Mech. Lett. 3, 105 (2015)

    Article  Google Scholar 

  38. A.G. Izard, R.F. Alfonso, G. McKnight, and L. Valdevit, Mater. Des. 135, 37 (2017)

    Article  Google Scholar 

  39. M. Farsari and B.N. Chichkov, Nat. Photonics 3(8), 450 (2009)

    Article  Google Scholar 

  40. S. Juodkazis, V. Mizeikis, and H. Misawa, J. Appl. Phys. 106(5), 8 (2009)

    Article  Google Scholar 

  41. T. Zandrini, R. Suriano, C.D. Marco, R. Osellame, S. Turri, and F. Bragheri, Factories of the Future (Springer, Cham, 2019), pp.255–273

    Book  Google Scholar 

  42. J. Jin, C.L. Lin, S. Assemi, J.D. Miller, D.P. Butt, T. Jordan, M.D. Deo, and V. Semeykina, J. Pet. Sci. Eng. 208, 109780 (2022)

    Article  Google Scholar 

  43. V.R. Salvini, V.C. Pandolfelli, and D. Spinelli, Mechanical properties of porous ceramics, in Recent Advances in Porous Ceramics. (IntechOpen Limited, London, 2018), pp.171–199

    Google Scholar 

  44. E.S. Lee, T.S. Goh, J.S. Lee, J.Y. Heo, G.B. Kim, and C.S. Lee, Compos. Part B Eng. 163, 130 (2019)

    Article  Google Scholar 

  45. L.S. Nelson, J. Qual. Technol. 30(3), 298 (1998)

    Article  Google Scholar 

  46. M.G. Larson, Circulation 117(1), 115 (2008)

    Article  MathSciNet  Google Scholar 

  47. H. Abdi and L.J. Williams, Encycl. Res. Des. 3(1), 1 (2010)

    Google Scholar 

  48. C. Torres-Sanchez, J. McLaughlin, and R. Bonallo, J. Mater. Eng. Perform. 27(6), 2899 (2018)

    Article  Google Scholar 

  49. B. Vazic and P. Newell, Mech. Mater. 181, 104641 (2023). https://doi.org/10.1016/j.mechmat.2023.104641

    Article  Google Scholar 

  50. Q. Li, E.Y. Chen, D.R. Bice, and D.C. Dunand, Metall. Mater. Trans. A 39, 441 (2008)

    Article  Google Scholar 

  51. C. Jiang, S. Cai, L. Mao, and Z. Wang, Materials 13(1), 140 (2019)

    Article  Google Scholar 

  52. W. Voigt et al., Ann. Phys. Chem. 274, 573 (1889)

    Article  Google Scholar 

  53. M.F. Ashby and R. Medalist, Metall. Trans. A 14(9), 1755 (1983)

    Article  Google Scholar 

  54. R. Cui, S.M. Hassanizadeh, and S. Sun, Earth Sci. Rev. 234, 104203 (2022)

    Article  Google Scholar 

  55. G. Mason and N.R. Morrow, J. Colloid Interface Sci. 141(1), 262 (1991)

    Article  Google Scholar 

  56. M.R. Stinson and Y. Champoux, J. Acoust. Soc. Am. 91(2), 685 (1992)

    Article  Google Scholar 

  57. M. Brun, A. Lallem, J.F. Quinson, and C. Eyraud, Thermochim. Acta 21(1), 59 (1977)

    Article  Google Scholar 

  58. G. Straffelini, V. Fontanari, and A. Molinari, Mater. Sci. Eng. A 260(1–2), 197 (1999)

    Article  Google Scholar 

  59. G. Ghahremani, A. Bagheri, and H. Zanganeh, Constr. Build. Mater. 371, 130720 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported as part of the Multi-Scale Fluid?Solid Interactions in Architected and Natural Materials (MUSE) Project, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award #DESC0019285. Specifically, MUSE supported the experimental work performed by Seo Young Ahn. The authors would like to thank Dr. Matthew Dickerson from the Air Force Research Lab for his assistance in conducting the preliminary studies leading up to this research. The authors would also like to thank the University of Utah NanoFab facility for their training and assistance with the experiments.

Author information

Authors and Affiliations

Authors

Contributions

SA—Formal Analysis, Writing—Original Draft, Data Curation, Visualization, Writing—Review & Editing; YW—Formal Analysis, Writing—Review & Editing; BV—Formal Analysis, Visualization, Writing & Editing; RW—Formal Analysis, Investigation, Methodology, Supervision, Writing—Review & Editing; PN—Project Administration, Conceptualization, Supervision, Writing—Review & Editing. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Pania Newell.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, S.Y., Wang, Y., Vazic, B. et al. Probing the Mechanical Performance of Micro-architected Porous Structures Through In Situ Characterization and Analysis. JOM 75, 4361–4375 (2023). https://doi.org/10.1007/s11837-023-06061-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06061-5

Navigation