Skip to main content
Log in

Process Optimization and Kinetics of Leaching Magnesium from Low-Grade Magnesite with Ammonium Bisulfate

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article mainly studies the process optimization and kinetics of leaching magnesium from low-grade magnesite in ammonium bisulfate (NH4HSO4) solution. The effects of leaching time, leaching temperature, ammonium bisulfate concentration and excess rate of ammonium bisulfate on the magnesium leaching rate were investigated, and the composition and microstructure of magnesite before and after leaching were analyzed. Through optimization based on the response surface method based on the center combination design, the optimal leaching conditions are determined as follows: the leaching time is 7.7 h, the leaching temperature is 94°C, the mass concentration of NH4HSO4 is 19.2%, and the excess rate of NH4HSO4 is 18.7%. Under the optimal conditions, the leaching rate of magnesium was 95.9%. Using a shrinking core model, dissolution curves were evaluated. The leaching kinetics of magnesite in ammonium bisulfate solution show that the leaching was controlled by a surface chemical reaction with an activation energy of 43.40 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.C. Xu, Y. Yang, X.D. Peng, J.F. Song, and F.S. Pan, J. Magnes. Alloys. https://doi.org/10.1016/j.jma.2019.08.001 (2019).

    Article  Google Scholar 

  2. J. Song, J. She, D.L. Chen, and F.S. Pan, J. Magnes. Alloys. https://doi.org/10.1016/j.jma.2020.02.003 (2020).

    Article  Google Scholar 

  3. M. Yeganeh and N. Mohammadi, J. Magnes. Alloys. https://doi.org/10.1016/j.jma.2018.02.001 (2018).

    Article  Google Scholar 

  4. K. Luo, L. Zhang, G.H. Wu, W.C. Liu, and W.J. Ding, J. Magnes. Alloys. https://doi.org/10.1016/j.jma.2019.03.002 (2019).

    Article  Google Scholar 

  5. Y.H. Ali, D. Qiu, B. Jiang, F.S. Pan, and M.X. Zhang, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2014.09.061 (2015).

    Article  Google Scholar 

  6. I. Bentli, N. Erdogan, N. Elmas, and M. Kaya, Sep. Sci. Technol. https://doi.org/10.1080/01496395.2017.1281307 (2017).

    Article  Google Scholar 

  7. C. Sadik, O. Moudden, A. El Bouari, and I. El Amrani, J. Asian Ceram. Soc. https://doi.org/10.1016/j.jascer.2016.06.006 (2016).

    Article  Google Scholar 

  8. Y. Cui, D.L. Qu, X.D. Luo, X. Liu, and Y.X. Guo, Ceram. Int. https://doi.org/10.1016/j.ceramint.2020.09.150 (2021).

    Article  Google Scholar 

  9. Y.N. Zhao and G.C. Zhu, Int. J. Miner. Process. https://doi.org/10.1016/j.minpro.2013.11.006 (2014).

    Article  Google Scholar 

  10. Q.D. Hou, X.D. Luo, M.T. Li, D. An, and Z.P. Xie, Int. J. Appl. Ceram. TEC. https://doi.org/10.1111/ijac.13708 (2021).

    Article  Google Scholar 

  11. N. Raza, Z.I. Zafar, and M. Najam-ul-Haq, Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2014.08.008 (2014).

    Article  Google Scholar 

  12. H.R. Sun, B. Yang, Z.L. Zhu, W.Z. Yin, Q.Y. Sheng, and Y. Hou, Miner. Eng. https://doi.org/10.1016/j.mineng.2020.106660 (2021).

    Article  Google Scholar 

  13. N. Raza, W. Raza, and M. Asif, Russ. J. Non-Ferr. Met. https://doi.org/10.3103/S1067821216040106 (2016).

    Article  Google Scholar 

  14. J.F. Wang, Z.B. Li, A. Park, and C. Petit, AICHE J. https://doi.org/10.1002/aic.14789 (2015).

    Article  Google Scholar 

  15. N. Raza, Z.I. Zafar, A. Najam-ul-Haq, and R.V. Kumar, Int. J. Miner. Process. https://doi.org/10.1016/j.minpro.2015.04.008 (2015).

    Article  Google Scholar 

  16. M. Kyslytsyna, P. Raschman, Ľ Popovič, and G. Sučik, Acta Montan Slovaca. https://doi.org/10.46544/AMS.v25i1.4 (2020).

    Article  Google Scholar 

  17. F. Demir, O. Laçin, and B. Dönmez, Ind. Eng. Chem. Res. https://doi.org/10.1021/ie0507629 (2006).

    Article  Google Scholar 

  18. N. Raza and Z.I. Zafar, Int. J. Met. https://doi.org/10.1155/2013/352496 (2013).

    Article  Google Scholar 

  19. B. Bayrak, O. Laçin, and H. Saraç, J. Ind. Eng. Chem. https://doi.org/10.1016/j.jiec.2010.01.055 (2010).

    Article  Google Scholar 

  20. F. Demir, O. Laçin, and B. Dönmez, J. Ind. Eng. Chem. https://doi.org/10.1021/ie0507629 (2006).

    Article  Google Scholar 

  21. P. Raschman, Hydrometallurgy. https://doi.org/10.1016/S0304-386X(00)00078-5 (2000).

    Article  Google Scholar 

  22. S. Klochkovskii, A. Smirnov, and U. Shabalina, Defect Diffus. Forum. https://doi.org/10.4028/www.scientific.net/DDF.309-310.261 (2011).

    Article  Google Scholar 

  23. Y.S. Wu, X. Yang, L.S. Li, Y.Z. Wang, and M.C. Li, Chem. Pap. https://doi.org/10.1007/s11696-019-00779-w (2019).

    Article  Google Scholar 

  24. R.F. Gunst, R.H. Myers, and D.C. Montgomery, Technometrics. https://doi.org/10.2307/1270613 (1996).

    Article  Google Scholar 

  25. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, and L.A. Escaleira, Talanta. https://doi.org/10.1016/j.talanta.2008.05.019 (2008).

    Article  Google Scholar 

  26. S.M.J. Mirazimi, F. Rashchi, and M. Saba, Sep. Purif. Technol. https://doi.org/10.1016/j.seppur.2013.05.032 (2013).

    Article  Google Scholar 

  27. Živorad R. Lazić, Design of Experiments in Chemical Engineering A Practical Guide, (Weinhem, Euros, 2005), p610.

  28. X.B. Zhu, Y.M. Zhang, J. Huang, T. Liu, and Y. Wang, Int. J. Miner. Process. https://doi.org/10.1016/j.minpro.2012.07.001 (2012).

    Article  Google Scholar 

  29. O. Levenspiel, Chemical Reaction Engineering (John Wiley & Sons, New York, 1998), p120.

    Google Scholar 

  30. E.A. Abdel-Aal, Hydrometallurgy. https://doi.org/10.1016/S0304-386X(00)00059-1 (2000).

    Article  Google Scholar 

  31. T. Rosenqvist, Principles of Extractive Metallurgy (Tapir academic press, Norway, 2004), p22.

    Google Scholar 

  32. C.Y. Wen, Ind. Eng. Chem. https://doi.org/10.1021/IE50705A007 (1968).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Liaoning Province Applied Basic Research Program Project 2023JH2/101300245, the National Natural Science Foundation of China (Grant no. 51974188) and the Liaoning Revitalization Talents Program (No. XLYC2008014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laishi Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Li, L., Wu, Y. et al. Process Optimization and Kinetics of Leaching Magnesium from Low-Grade Magnesite with Ammonium Bisulfate. JOM 75, 4385–4396 (2023). https://doi.org/10.1007/s11837-023-06058-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06058-0

Navigation