Skip to main content

Advertisement

Log in

Influence of Concentration of Potassium Hydroxide in Electrolyte on Formation of Hydroxyapatite Coatings on Titanium

  • Advanced Functional and Structural Thin Films and Coatings
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Hydroxyapatite coatings were deposited on commercially pure titanium substrates using plasma electrolytic oxidation at various concentrations of potassium hydroxide (i.e., 0.5 M, 1 M, 1.5 M and 2 M) in an electrolyte containing hydroxyapatite. The microstructure, phase composition, morphology and elemental composition of PEO coatings were studied. The electrochemical corrosion behaviour of the hydroxyapatite coatings was investigated in Ringer’s solution. It was shown that corrosion resistance was increased by increasing the concentration of potassium hydroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Ronoh, F. Mwema, S. Dabees, and D. Sobola, Biomed. Adv. Eng. https://doi.org/10.1016/j.bea.2022.100047 (2022).

    Article  Google Scholar 

  2. S. Sorek, A. Miller, D. Griepp, S. Moawad, R. Zanzerkia, and R. Rahme, World Neurosurg. 167, e1387 (2022).

    Article  Google Scholar 

  3. F. Rupp, L. Liang, J. Geis-Gerstorfer, L. Scheideler, and F. Hüttig, Dent. Mater. 34, 40 (2018).

    Article  Google Scholar 

  4. S. Bartakova, J. Malek, and P. Prachar, JOM. https://doi.org/10.1007/s11837-019-03879-w (2019).

    Article  Google Scholar 

  5. M. Buzatu, V. Geanta, R. Stefanoiu, M. Butu, M.-I. Petrescu, M. Buzatu, V.-G. Ghica, F. Niculescu, and G. Iacob, JOM 71, 2272 (2019).

    Article  Google Scholar 

  6. I.M. Pohrelyuk, O.V. Tkachuk, R.V. Proskurnyak, N.M. Boiko, OYu. Kluchivska, R.S. Stoika, and P. Ozga, J. Mater. Eng. Perform. 29, 7785 (2020).

    Article  Google Scholar 

  7. A. Carradò, F. Perrin-Schmitt, Q.V. Le, M. Giraudel, C. Fischer, G. Koenig, L. Jacomine, L. Behr, A. Chalom, L. Fiette, A. Morlet, and G. Pourroy, Dent. Mater. 33, 321 (2017).

    Article  Google Scholar 

  8. A.M. Janus, M. Faryna, K. Haberko, A. Rakowska, and T. Panz, Microchim. Acta 161, 349 (2008).

    Article  Google Scholar 

  9. A.S. Hammood, S.S. Hassan, and M.T. Alkhafagy, JOM 71, 272 (2019).

    Article  Google Scholar 

  10. Y. Che, S. Min, M. Wang, M. Rao, and C. Quan, J. Appl. Polym. Sci. https://doi.org/10.1002/app.48188 (2019).

    Article  Google Scholar 

  11. S. Panda, C.K. Biswas, and S. Paul, Ceram. Int. 47, 28122 (2021).

    Article  Google Scholar 

  12. R.C. Rocha, A.G. de Sousa Galdino, S.N. da Silva, and M.L.P. Machado, Mater. Res. https://doi.org/10.1590/1980-5373-MR-2017-1144 (2018).

    Article  Google Scholar 

  13. N. Bosh, H. Mozaffari-Jovein, and C. Muller, J. Therm. Spray. Technol. https://doi.org/10.1007/s11666-018-0753-8 (2018).

    Article  Google Scholar 

  14. D. Angioni, R. Orrù, G. Cao, S. Garroni, D. Bellucci, and V. Cannillo, J. Eur. Ceram. 43, 1220 (2023).

    Article  Google Scholar 

  15. A. Kazek-Kesik, D. Djurado, S. Pouget, A. Blacha-Grzechnik, I. Kalemba-Rec, and W. Simka, Mater. https://doi.org/10.3390/ma13235468 (2020).

    Article  Google Scholar 

  16. B. Pietrzyk, D. Kucharski, Ł Kołodziejczyk, S. Miszczak, and M. Fijalkowski, Mater. https://doi.org/10.3390/ma13030502 (2020).

    Article  Google Scholar 

  17. C. Domínguez-Trujillo, E. Peón, E. Chicardi, H. Pérez, J.A. Rodríguez-Ortiz, J.J. Pavón, J. García-Couce, J.C. Galván, F. García-Moreno, and Y. Torres, Surf. Coat. Tech. 333, 158 (2018).

    Article  Google Scholar 

  18. O.A. González-Estrada, A.D. Pertuz Comas, and R. Ospina, Thin Solid Films. https://doi.org/10.1016/j.tsf.2022.139592 (2022).

    Article  Google Scholar 

  19. P. Rajesh, C.V. Muraleedharan, M. Komath, and H. Varma, J. Mater. Sci. Mater. Med. 22, 1671 (2011).

    Article  Google Scholar 

  20. I. Fatimah, H. Hidayat, P.W. Citradewi, M. Tamyiz, R. Doong, and S. Sagadevan, Heliyon. https://doi.org/10.1016/j.heliyon.2023.e14434 (2023).

    Article  Google Scholar 

  21. P.K. Srivas, K. Kapat, B. Das, P. Pal, P.G. Ray, and S. Dhara, Appl. Surf. Sci. 478, 806 (2019).

    Article  Google Scholar 

  22. N.F. Mohammad, R.N. Ahmad, N.L. MohdRosli, M.S. AbdulManan, M. Marzuki, and A. Wahi, Mater. Today Proc. 41, 127 (2021).

    Article  Google Scholar 

  23. T. Moskalewicz, M. Warcaba, A. Łukaszczyk, M. Kot, A. Kopia, Z. Hadzhieva, and A.R. Boccaccini, Appl. Surf. Sci. https://doi.org/10.1016/j.apsusc.2021.151688 (2022).

    Article  Google Scholar 

  24. S.A. Adeleke, S. Ramesh, A.R. Bushroa, Y.C. Ching, I. Sopyan, M.A. Maleque, S. Krishnasamy, H. Chandran, H. Misran, and U. Sutharsini, Ceram. Int. 44, 1802 (2018).

    Article  Google Scholar 

  25. S. Lederer, S. Sankaran, T. Smith, and W. Furbeth, Surf. Coat. Technol. 363, 66 (2019).

    Article  Google Scholar 

  26. J. Michalska, M. Sowa, M. Piotrowska, M. Widziołek, G. Tylko, G. Dercz, R.P. Socha, A.M. Osyczka, and W. Simka, Mater. Sci. Eng. C. https://doi.org/10.1016/j.msec.2019.109957 (2019).

    Article  Google Scholar 

  27. T.H. Qaid, S. Ramesh, F. Yusof, W.J. Basirun, Y.C. Ching, H. Chandran, S. Ramesh, and S. Krishnasamy, Ceram. Int. 45, 18371 (2019).

    Article  Google Scholar 

  28. S. Arun, B.-S. Lim, S.-G. Ahn, and H.-C. Choe, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2023.169131 (2023).

    Article  Google Scholar 

  29. A. Schwartz, A. Kossenko, M. Zinigrad, Y. Gofer, K. Borodianskiy, and A. Sobolev, Materials. https://doi.org/10.3390/ma15207374 (2022).

    Article  Google Scholar 

  30. J.M. Cordeiro, B.E. Nagay, A. Lúcia, R. Ribeiro, N.C. da Cruz, E.C. Rangel, L.M.G. Fais, L.G. Vaz, and V.A.R. Barao, J. Alloys Compd. 770, 1038 (2019).

    Article  Google Scholar 

  31. S.-P. Kim, H.-R. Cho, and H.-C. Choe, Surf. Coat. Techol. https://doi.org/10.1016/j.surfcoat.2020.126649 (2021).

    Article  Google Scholar 

  32. E.Z. Nahum, S. Lugovskoy, A. Lugovskoy, B. Kazanski, and A. Sobolev, J. Mater. Res. Technol. 24, 2169 (2023).

    Article  Google Scholar 

  33. H.-P. Teng, C.-J. Yang, J.-F. Lin, Y.-H. Huang, and F.-H. Lu, Electrochim. Acta 193, 216 (2016).

    Article  Google Scholar 

  34. O. Yigit, B. Dikici, N. Ozdemir, and E. Arslan, Surf. Coat. Technol. https://doi.org/10.1016/j.surfcoat.2021.127139 (2021).

    Article  Google Scholar 

  35. J.-M. Yu, H.-R. Cho, and H.-C. Choe, Thin Solid Films. https://doi.org/10.1016/j.tsf.2022.139124 (2022).

    Article  Google Scholar 

  36. A.R. Rafieerad, M.R. Ashra, R. Mahmoodian, and A.R. Bushroa, Mater. Sci. Eng. C 57, 397 (2015).

    Article  Google Scholar 

  37. P. Zhang, Z. Zhang, W. Li, and M. Zhu, Appl. Surf. Sci. 268, 381 (2013).

    Article  Google Scholar 

  38. L. Kostelac, L. Pezzato, A.G. Settimi, M. Franceschi, C. Gennari, K. Brunelli, C. Rampazzo, and M. Dabala, Surf. Interfaces. https://doi.org/10.1016/j.surfin.2022.101888 (2022).

    Article  Google Scholar 

  39. O.V. Tkachuk, I.M. Pohrelyuk, R.V. Proskurnyak, J. Morgiel, M. Faryna, and A. Goral, J. Mater. Eng. Perform. 29, 7785 https://doi.org/10.1007/s11665-023-07910-9 (2023).

    Article  Google Scholar 

  40. S. Luo, Q. Wang, R. Ye, and C.S. Ramachandran, Surf. Coat. Technol. 375, 864 (2019).

    Article  Google Scholar 

  41. N. Ohtsu, K. Sato, A. Yanagawa, K. Saito, Y. Imai, T. Kohgo, A. Yokoyama, K. Asami, and T. Hanawa, J. Biomed. Mater. Res. 82A, 304 (2007).

    Article  Google Scholar 

  42. S. Durdu, M. Usta, and A.S. Berkem, Surf. Coat. Technol. 301, 85 (2016).

    Article  Google Scholar 

  43. A. Kurella and N.B. Dahotre, JOM 58, 64 (2006).

    Article  Google Scholar 

  44. Y. Shibata and Y. Tanimoto, J. Prosthodont. Res. 59, 20 (2015).

    Article  Google Scholar 

  45. C. Pierre, G. Bertrand, C. Rey, O. Benhamou, and C. Combes, Dent. Mater. https://doi.org/10.1016/j.dental.2018.10.005 (2019).

    Article  Google Scholar 

  46. R.J. Gilliam, J.W. Graydon, D.W. Kirk, and S.J. Thorpe, Int. J. Hydrog. Energy 32, 359 (2007).

    Article  Google Scholar 

  47. L. Benea, E. Mardare-Danaila, M. Mardare, and J.-P. Celis, Corros. Sci. 80, 331 (2014).

    Article  Google Scholar 

  48. D. Velten, V. Biehl, F. Aubertin, B. Valeske, W. Possart, and J. Breme, J. Biomed. Mater. Res. 59, 18 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Tkachuk.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tkachuk, O.V., Pohrelyuk, I.M., Proskurnyak, R.V. et al. Influence of Concentration of Potassium Hydroxide in Electrolyte on Formation of Hydroxyapatite Coatings on Titanium. JOM 75, 5088–5095 (2023). https://doi.org/10.1007/s11837-023-06056-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06056-2

Navigation