Skip to main content
Log in

Bio-based Copolyesters from p-Hydroxybenzaldehyde: Synthesis, Characterization and Thermo-Mechanical Properties

  • Composite Materials for Sustainable and Eco-Friendly Material Development and Application
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Petroleum-based polyesters are widely used in daily life. However, their reliance on petroleum resources and non-biodegradability have raised concerns. Due to the advantages of being renewable, degradable, and abundant, bio-based polyester is expected to become a breakthrough in replacing petroleum-based polyester. In this study, p-hydroxybenzaldehyde, a bio-based monomer, was used to synthesize a novel diol, 2,2′-(4-((4-ethylphenyl)diazenyl)phenylazanediyl)diethanol (EDPD). The EDPD was then polymerized with 1,4-cyclohexanedimethanol (CHDM) and aliphatic diacids to synthesize a series of aliphatic-aromatic polyesters. Thermal analysis showed that the Tg varied from 43°C to 104°C, while the melting point (Tm) varied from 118°C to 156°C. All the polyesters exhibited high yield strengths (48–79 MPa) and tough values (elongation at break of 240–330%). After 30 weeks of soil incubation, the mass loss of the copolyester could reach 4.3%. The investigation of the eco-toxicity of the copolyesters showed that the survival rate of Eisenia foetida was more than 80%, demonstrating their low toxicity in natural habitats. The copolyesters investigated in this study exhibited good thermal, mechanical, and biodegradability properties. The properties of the copolyesters can be adjusted by varying the length of the carbon chains of the dicarboxylic acid moieties. These bio-based copolyesters could provide an important way to promote carbon neutrality and sustainable development of bio-based plastics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Joshi, V. Midha, and S. Rajendran, Prog. Org. Coat. 178, 107482 https://doi.org/10.1016/j.porgcoat.2023.107482 (2023).

    Article  Google Scholar 

  2. Q. Zhang, M. Song, Y. Xu, W. Wang, Z. Wang, and L. Zhang, Prog. Polym. Sci. 120, 101430 https://doi.org/10.1016/j.progpolymsci.2021.101430 (2021).

    Article  Google Scholar 

  3. R. Geyer, J.R. Jambeck, and K.L. Law, Sci. Adv. 3, 1700782 https://doi.org/10.1126/sciadv.1700782 (2017).

    Article  Google Scholar 

  4. P. Jana, M. Shyam, S. Singh, V. Jayaprakash, and A. Dev, Eur. Polym. J. 142, 110155 https://doi.org/10.1016/j.eurpolymj.2020.110155 (2021).

    Article  Google Scholar 

  5. S. Farah, D.G. Anderson, and R. Langer, Adv. Drug Del. Rev. 107, 367 https://doi.org/10.1016/j.addr.2016.06.012 (2016).

    Article  Google Scholar 

  6. K.R. Kunduru, R. Hogerat, K. Ghosal, M. Shaheen-Mualim, and S. Farah, Chem. Eng. J. 459, 141211 https://doi.org/10.1016/j.cej.2022.141211 (2023).

    Article  Google Scholar 

  7. T. Zeng, G. He, X. Li, and C. Wang, J. Appl. Polym. Sci. 138, 50790 https://doi.org/10.1002/app.50790 (2021).

    Article  Google Scholar 

  8. S.M. Prasanth, P.S. Kumar, S. Harish, M. Rishikesh, S. Nanda, and D.-V.N. Vo, Chemosphere 280, 130723 https://doi.org/10.1016/j.chemosphere.2021.130723 (2021).

    Article  Google Scholar 

  9. P.T. Benavides, U. Lee, and O. Zare-Mehrjerdi, J. Clean. Prod. 277, 124010 https://doi.org/10.1016/j.jclepro.2020.124010 (2020).

    Article  Google Scholar 

  10. P.T. Benavides, J.B. Dunn, J. Han, M. Biddy, and J. Markharn, ACS Sustain. Chem. 6, 9725 https://doi.org/10.1021/acssuschemeng.8b00750 (2018).

    Article  Google Scholar 

  11. V. Sharma, R. Sehgal, and R. Gupta, Polymer 212, 123161 https://doi.org/10.1016/j.polymer.2020.123161 (2021).

    Article  Google Scholar 

  12. J. Yang, J.-Z. Liang, and F.-J. Li, J. Macromol. Sci. B. 51, 1715 https://doi.org/10.1080/00222348.2012.657585 (2012).

    Article  Google Scholar 

  13. A. Shakeel, K. Rizwan, U. Farooq, S. Iqbal, and A.A. Altaf, Chemosphere 294, 133772 https://doi.org/10.1016/j.chemosphere.2022.133772 (2022).

    Article  Google Scholar 

  14. S. Iqbal, M. Javed, M.A. Qamar, A. Bahadur, M. Fayyaz, A. Akbar, H.O. Alsaab, N.S. Awwad, and H.A. Ibrahium, ChemistrySelect 7, 1 https://doi.org/10.1002/slct.202103694 (2022).

    Article  Google Scholar 

  15. C. Kuang, P. Tan, A. Bahadur, S. Iqbal, M. Javed, M.A. Qamar, M. Fayyaz, G. Liu, O.M. Alzahrani, E. Alzahrani, and A.-E. Farouk, J. Mater. Sci. 33, 9930 https://doi.org/10.1007/s10854-022-07984-6 (2022).

    Article  Google Scholar 

  16. S. Iqbal, M. Javed, A. Bahadur, M.A. Qamar, M. Ahmad, M. Shoaib, M. Raheel, N. Ahmad, M.B. Akbar, and H. Li, J. Mater. Sci 31, 8423 https://doi.org/10.1007/s10854-020-03377-9 (2020).

    Article  Google Scholar 

  17. S. Iqbal, A. Bahadur, S. Anwer, M. Shoaib, G. Liu, H. Li, M. Raheel, M. Javed, and B. Khalid, CrystEngComm 22, 4162 https://doi.org/10.1039/d0ce00421a (2020).

    Article  Google Scholar 

  18. S. Iqbal, Z. Pan, and K. Zhou, Nanoscale 9, 6638 https://doi.org/10.1039/c7nr01705g (2017).

    Article  Google Scholar 

  19. J.G. Acheson, A. McFerran, D. Xu, M. Ziminska, S. Goel, A.B. Lennon, N. Dunne, and A.R. Hamilton, Surf. Coat. Technol. 458, 129335 https://doi.org/10.1016/j.surfcoat.2023.129335 (2023).

    Article  Google Scholar 

  20. R. Kumar, Y. Alex, B. Nayak, and S. Mohanty, J. Mech. Behav. Biomed. Mater. 141, 105813 https://doi.org/10.1016/j.jmbbm.2023.105813 (2023).

    Article  Google Scholar 

  21. G. Martínez-Barrera, O. Gencel, and M. Martínez-López, Constr. Build. Mater. 356, 129278 https://doi.org/10.1016/j.conbuildmat.2022.129278 (2022).

    Article  Google Scholar 

  22. C.H. Flores-Tamez, P. Elizondo-Martínez, R.M. Jiménez-Barrera, I. Moggio, E. Arias, M.G. Sánchez-Anguiano, M.C. García-López, and R. Chan-Navarro, Opt. Mater. 137, 113516 https://doi.org/10.1016/j.optmat.2023.113516 (2023).

    Article  Google Scholar 

  23. N. Mamidi, M.R.M. Gamero, J.V. Castrejón, and A.E. Zúníga, Diamond Relat. Mater. 97, 107435 https://doi.org/10.1016/j.diamond.2019.05.020 (2019).

    Article  Google Scholar 

  24. F. Rothenhausler and H. Ruckdaeschel, Polymers (Basel) 15, 385 https://doi.org/10.3390/polym15020385 (2023).

    Article  Google Scholar 

  25. S.M. Hong, H.J. Kwon, and C.W. Lee, Polymers (Basel) 15, 418 https://doi.org/10.3390/polym15020418 (2023).

    Article  Google Scholar 

  26. K. Fujieda, Y. Enomoto, Y. Zhang, and T. Iwata, Polymer 257, 125241 https://doi.org/10.1016/j.polymer.2022.125241 (2022).

    Article  Google Scholar 

  27. K. Fujieda, Y. Enomoto, Q. Huang, and T. Iwata, Polymer 268, 125685 https://doi.org/10.1016/j.polymer.2023.125685 (2023).

    Article  Google Scholar 

  28. D. Pospiech, A. Korwitz, H. Komber, D. Jehnichen, K. Arnhold, H. Brunig, H. Scheibner, M.T. Mueller, and B. Voit, Polym. Chem.-UK 12, 5139 https://doi.org/10.1039/d1py00851j (2021).

    Article  Google Scholar 

  29. K. Ahmad, H. Roy Ghatak, and S.M. Ahuja, J. Indian Chem. Soc. 99, 100382 https://doi.org/10.1016/j.jics.2022.100382 (2022).

    Article  Google Scholar 

  30. L. Zhao, J. Zhang, D. Zhao, L. Jia, B. Qin, X. Cao, L. Zang, F. Lu, and F. Liu, Ind. Crop. Prod. 188, 115715 https://doi.org/10.1016/j.indcrop.2022.115715 (2022).

    Article  Google Scholar 

  31. S. Singh and H.R. Ghatak, Holzforschung 72, 187 https://doi.org/10.1515/hf-2017-0108 (2018).

    Article  Google Scholar 

  32. N. Srisasiwimon, S. Chuangchote, N. Laosiripojana, T. Sagawa, and A.C.S. Sustain, Chem. 6, 13968 https://doi.org/10.1021/acssuschemeng.8b02353 (2018).

    Article  Google Scholar 

  33. X. Lu and X. Gu, Int. J. Biol. Macromol. 229, 778 https://doi.org/10.1016/j.ijbiomac.2022.12.322 (2023).

    Article  Google Scholar 

  34. J.J. Conde, S. González-Rodríguez, X. Chen, T.A. Lu-Chau, G. Eibes, A. Pizzi, and M.T. Moreira, Biomass Bioenergy 169, 106693 https://doi.org/10.1016/j.biombioe.2022.106693 (2023).

    Article  Google Scholar 

  35. H.A. Ariyanta, E.B. Santoso, L. Suryanegara, E.T. Arung, I.W. Kusuma, M.N.A.M. Taib, M.H. Hussin, Y. Yanuar, I. Batubara, and W. Fatriasari, Sustain. Chem. Pharm. 32, 100966 https://doi.org/10.1016/j.scp.2022.100966 (2023).

    Article  Google Scholar 

  36. K. Ahmad, H. Roy Ghatak, and S.M. Ahuja, React. Kinet. Mech. Catal. 131, 383 https://doi.org/10.1007/s11144-020-01840-6 (2020).

    Article  Google Scholar 

  37. Y. Yin, X. Mu, B. Li, Y. Yang, and D. Wang, Environ. Sci. Technol. 38, 64 https://doi.org/10.13320/j.cnki.hjfor.2023.009 (2023).

    Article  Google Scholar 

  38. K. Shukla, A. Arunagiri, and K. Muthukumar, J. Indian Chem. Soc. 100, 100841 https://doi.org/10.1016/j.jics.2022.100841 (2023).

    Article  Google Scholar 

  39. J. Lu, L. Zhou, H. Xie, L. Wu, and B.-G. Li, Eur. Polym. J. 110, 168 https://doi.org/10.1016/j.eurpolymj.2018.11.029 (2019).

    Article  Google Scholar 

  40. D.K. Geeti and K. Niranjan, Prog. Org. Coat. 127, 419 https://doi.org/10.1016/j.porgcoat.2018.11.034 (2019).

    Article  Google Scholar 

  41. W.M.K. Siegu, L.D.W. Djouonkep, E.K. Adom, A. Muaz, M. Gauthier, and Z. Cheng, J. Polym. Environ. 30, 2435 https://doi.org/10.1007/s10924-022-02373-w (2022).

    Article  Google Scholar 

  42. F. Li, Y. Gao, C. Zhang, J. Jin, X. Ji, Y. Zhang, X. Zhang, and W. Jiang, Polym. Plast. Technol. Eng. 208, 122957 https://doi.org/10.1016/j.polymer.2020.122957 (2020).

    Article  Google Scholar 

  43. S.K. Burgess, J.E. Leisen, B.E. Kraftschik, C.R. Mubarak, R.M. Kriegel, and W.J. Koros, Macromolecules 47, 1383 https://doi.org/10.1021/ma5000199 (2014).

    Article  Google Scholar 

  44. X. Pan, Y. Tian, J. Li, Q. Tan, and J. Ren, Chem. Eng. Sci. 264, 118152 https://doi.org/10.1016/j.ces.2022.118152 (2022).

    Article  Google Scholar 

  45. D.H. Weinland, R.-J. van Putten, and G.-J.M. Gruter, Eur. Polym. J. 164, 110964 https://doi.org/10.1016/j.eurpolymj.2021.110964 (2022).

    Article  Google Scholar 

  46. Z. Cheng, J. Cheng, J. Chen, J. Xiong, X. Sun, R. Jia, B. Yuan, and G. Mario, J. Wuhan Univ. Technol. 36, 557 https://doi.org/10.1007/s11595-021-2444-4 (2021).

    Article  Google Scholar 

  47. N.K. Kalita and M. Hakkarainen, Curr. Opin. Green Sustain. 40, 100751 https://doi.org/10.1016/j.cogsc.2022.100751 (2023).

    Article  Google Scholar 

  48. Y. Tachibana, T. Tsutsuba, K. Kageyama, and K.-I. Kasuya, Polym. Degrad. Stab. 190, 109650 https://doi.org/10.1016/j.polymdegradstab.2021.109650 (2021).

    Article  Google Scholar 

  49. S. Goel, S. Dubey, S. Sharma, and J. Jacob, Eur. Polym. J. 162, 110919 https://doi.org/10.1016/j.eurpolymj.2021.110919 (2022).

    Article  Google Scholar 

  50. Y. Tachibana, M. Yamahata, H. Ichihara, and K.-I. Kasuya, Polym. Degrad. Stab. 146, 121 https://doi.org/10.1016/j.polymdegradstab.2017.10.001 (2017).

    Article  Google Scholar 

  51. A. Jahnke, H.P.H. Arp, B.I. Escher, B. Gewert, E. Gorokhova, D. Kuehnel, M. Ogonowski, A. Potthoff, C. Rummel, M. Schmitt-Jansen, E. Toorman, and M. MacLeod, Environ. Sci. Technol. Lett. 4, 85 https://doi.org/10.1021/acs.estlett.7b00008 (2017).

    Article  Google Scholar 

  52. L.D.W. Djouonkep, A.P. Tchameni, N.B. Selabi, A.K. Tamo, I. Doench, Z. Cheng, M. Gauthier, B. Xie, and A. Osorio-Madrazo, Int. J. Mol. Sci. 23, 8967 https://doi.org/10.3390/ijms23168967 (2022).

    Article  Google Scholar 

  53. W.M.K. Siegu, L.D.W. Djouonkep, N.B.S.S. Selabi, E.M. Bonku, Z. Cheng, and M. Gauthier, J. Polym. Environ. 31, 1144 https://doi.org/10.1007/s10924-022-02666-0 (2023).

    Article  Google Scholar 

  54. L.D.W. Djouonkep, A.K. Tamo, I. Doench, N.B.S. Selabi, E.M. Ilunga, A.R.K. Lenwoue, M. Gauthier, Z. Cheng, and A. Osorio-Madrazo, Molecules 27, 325 https://doi.org/10.3390/molecules27010325 (2022).

    Article  Google Scholar 

  55. L.D.W. Djouonkep, C.T. Tamo, B.E. Simo, N. Issah, M.N. Tchouagtie, N.B.S. Selabi, I. Doench, A.K. Tamo, B. Xie, and A. Osorio-Madrazo, Molecules 28, 1825 https://doi.org/10.3390/molecules28041825 (2023).

    Article  Google Scholar 

Download references

Funding

Funded by the Program (BG20190227001) of High-end Foreign Experts of the State Administration of Foreign Experts Affairs (SAFEA) and Coal Conversion and New Carbon Materials Hubei Key Laboratory at Wuhan University of Science and Technology (WKDM202009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengzai Cheng.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Cheng, Z., Djouonkep, L.D.W. et al. Bio-based Copolyesters from p-Hydroxybenzaldehyde: Synthesis, Characterization and Thermo-Mechanical Properties. JOM 75, 5300–5309 (2023). https://doi.org/10.1007/s11837-023-06047-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06047-3

Navigation