Skip to main content
Log in

High-Temperature Rheological Behavior and Microstructure Evolution of Mo-12Si-8.5B Alloy Reinforced by Layered Mo2TiAlC2 Phase

  • The Role of Refractory Elements in Advanced Alloys and Ceramics for Extreme Environments
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The rheological behavior of Mo-12Si-8.5B alloy reinforced by a layered Mo2TiAlC2 phase has been studied at temperatures ranging from 1200°C to 1400°C and strain rates ranging from 0.01 s−1 to 0.0001 s−1. The flow stress and microstructure evolution were investigated and the constitutive model was established. The results indicated that the Mo2TiAlC2 strengthens the Mo-12Si-8.5B alloy mainly by particle strengthening and grain boundary strengthening at high temperatures. With the increase of Mo2TiAlC2 content, the peak stress of the alloys improved. As the temperature increases or the strain rate decreases, the peak stress of the alloys decreases significantly. The microstructure reveals that the deformation of the Mo-12Si-8.5B-Mo2TiAlC2 alloy at high temperatures is mainly provided by the deformation of the α-Mo phase and grain boundary sliding. As the temperature rises to 1300–1400°C, the intermetallic phase gradually participates in the deforming but contributes less to the total deformation. Dynamic recovery and recrystallization greatly reduce dislocations at high temperatures. The Mo2TiAlC2 particles can inhibit recrystallization grain growth. In addition, the flow stress values of the Mo-12Si-8.5B-2 wt.% Mo2TiAlC2 alloy calculated by the constitutive model are in good agreement with the experimental values. Hence, it is reasonable to believe that the constitutive model can effectively predict the rheological behavior of alloys at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.A. Lemberg and R.O. Ritchie, Adv. Mater. 24, 3445 (2012).

    Article  Google Scholar 

  2. R. Mitra, Int. Mater. Rev. 51, 13 (2006).

    Article  Google Scholar 

  3. D.M. Dimiduk and J.H. Perepezko, MRS Bull. 28, 639 (2003).

    Article  Google Scholar 

  4. J.H. Schneibel, M.J. Kramer, and D.S. Easton, Scr. Mater. 46, 217 (2002).

    Article  Google Scholar 

  5. K.M. Pan, W. Liu, L.Q. Zhang, S.Z. Wei, L. Yong, J.P. Lin, J.W. Li, L.J. Xu, S.J. Zhou, and M.R. Han, Mater. Sci. Eng. A 623, 124 (2015).

    Article  Google Scholar 

  6. T. Yang, J.B. Wu, M. Huang, L. Zhu, J.F. Wang, T.L. Wang, Y.H. Fang, Z.X. Yan, and V. Levchenko, Vacuum 203, 111278 (2022).

    Article  Google Scholar 

  7. J.H. Schneibel, C.T. Liu, L. Heatherly, and M.J. Kramer, Scr. Mater. 38, 1169 (1998).

    Article  Google Scholar 

  8. J.M. Byun, S.R. Bang, S.H. Kim, W.J. Choi, and Y.D. Kim, Int. J. Refract. Met. Hard Mater. 65, 14 (2017).

    Article  Google Scholar 

  9. T. Moriyama, K. Yoshimi, M. Zhao, T. Masnou, T. Yokoyama, J. Nakamura, H. Katsui, and T. Goto, Intermetallics 84, 92 (2017).

    Article  Google Scholar 

  10. M. Krüger, P. Jain, K.S. Kumar, and M. Heilmaier, Intermetallics 48, 10 (2014).

    Article  Google Scholar 

  11. T. Yang and X.P. Guo, Int. J. Refract. Met. Hard Mater. 84, 104993 (2019).

    Article  Google Scholar 

  12. J. Wang, S. Ren, R. Li, X. Chen, B. Li, T. Wang, and G.J. Zhang, Prog. Nat. Sci. 28, 371 (2018).

    Article  Google Scholar 

  13. R. Li, B. Li, X. Chen, J. Wang, F.X. Yan, T. Wang, S. Ren, and G.J. Zhang, Mater. Sci. Eng. A 772, 138684 (2020).

    Article  Google Scholar 

  14. X.H. Lin, G.J. Zhang, W. Zhang, Y.C. Li, B. Li, and B.Y. Wang, Int. J. Refract. Met. Hard Mater. 109, 105967 (2022).

    Article  Google Scholar 

  15. J.H. Schneibel, M.J. Kramer, O. Unal, and R.N. Wright, Intermetallics 9, 25 (2001).

    Article  Google Scholar 

  16. P. Jéhanno, M. Heilmaier, H. Saage, M. Boning, H. Kestler, J. Freudenberger, and S. Drawin, Mater. Sci. Eng. A 463, 216 (2007).

    Article  Google Scholar 

  17. S.Y. Kamata, D. Kanekon, Y.Y. Lu, N. Sekido, K. Maruyama, G. Eggeler, and K. Yoshimi, Sci. Rep. 8, 10487 (2018).

    Article  Google Scholar 

  18. T.G. Nieh, J.G. Wang, and C.T. Liu, Intermetallics 9, 73 (2001).

    Article  Google Scholar 

  19. K.S. Kumar and A.P. Alur, Intermetallics 15, 687 (2007).

    Article  Google Scholar 

  20. A.P. Alur, N. Chollacoop, and K.S. Kumar, Acta Mater. 52, 5571 (2004).

    Article  Google Scholar 

  21. K. Huang and R.E. Logé, Mater. Des. 111, 548 (2016).

    Article  Google Scholar 

  22. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Prog. Mater. Sci. 60, 130 (2014).

    Article  Google Scholar 

  23. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd edn. (Pergamon Press, Oxford, 2004), pp131–133.

    Google Scholar 

  24. T. Sakai and M. Ohashi, Mater. Sci. Technol. 6, 1251 (1990).

    Article  Google Scholar 

  25. M.M. Myshlyaev, H.J. McQueen, A. Mwembela, and E. Konopleva, Mater. Sci. Eng. A 337, 121 (2002).

    Article  Google Scholar 

  26. I. Rosales, J.H. Schneibel, L. Heatherly, J.A. Horton, L. Martinez, and B. Campillo, Scr. Mater. 48, 185 (2003).

    Article  Google Scholar 

  27. P. Hu, Q. Cheng, S.L. Li, H.R. Xing, J.Y. Han, S.W. Ge, X.J. Hua, B.L. Hu, K.S. Wang, and L.P. Li, Adv. Eng. Mater. 2000661, 1 (2020).

    Google Scholar 

  28. L.J. Xu, T.L. Sun, Y.C. Zhou, F.N. Xiao, M.J. Zhang, and S.Z. Wei, J. Alloys Compd. 860, 158289 (2021).

    Article  Google Scholar 

  29. Y.C. Li, L.P. Li, J.F. Li, X.H. Lin, B.Q. Jiao, M.M. Wu, G.J. Zhang, and W. Zhang, Int. J. Refract. Met. Hard Mater. 98, 105535 (2021).

    Article  Google Scholar 

  30. Z. Li, Y.B. Chen, S.Z. Wei, F.N. Xiao, S.H. Siyal, and L.J. Xu, J. Alloys Compd. 802, 118 (2019).

    Article  Google Scholar 

  31. C. Zener and J.H. Hollomon, J. Appl. Phys. 15, 22 (1944).

    Article  Google Scholar 

  32. J.H. Schneibel, Intermetallics 11, 625 (2003).

    Article  Google Scholar 

  33. Q.G. Meng, C.G. Bai, and D.S. Xu, J. Mater. Sci. Technol. 34, 105 (2018).

    Google Scholar 

  34. J. Cai, F.G. Li, T.Y. Liu, B. Chen, and M. He, Mater. Des. 32, 1144 (2011).

    Article  Google Scholar 

  35. A.K. Maheshwari, Comput. Mater. Sci. 69, 350 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 52074219) and the Shaanxi Province Science and Technology Major Project (Grant No. 2020zdzx04-02-01)

Author information

Authors and Affiliations

Authors

Contributions

XL: Conceptualization, Methodology, Writing the original draft. GZ: Supervision, Writing—review & editing. WZ: Supervision, Methodology. YL: Formal analysis. BL: Data curation. BW: Investigation.

Corresponding authors

Correspondence to Guojun Zhang or Wen Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of competing for financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Zhang, G., Zhang, W. et al. High-Temperature Rheological Behavior and Microstructure Evolution of Mo-12Si-8.5B Alloy Reinforced by Layered Mo2TiAlC2 Phase. JOM 75, 4714–4726 (2023). https://doi.org/10.1007/s11837-023-06022-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06022-y

Navigation