Skip to main content
Log in

High-Temperature Compressive Properties of TiC-Added Mo-Si-B Alloys

  • Published:
JOM Aims and scope Submit manuscript

Abstract

High-temperature compressive properties of two TiC-added Mo-Si-B alloys with nominal compositions of Mo-5Si-10B-7.5TiC (70Mo alloy) and Mo-6.7Si-13.3B-7.5TiC (65Mo alloy) (at.%) were investigated. The alloys were composed of four constituent phases: Mo solid solution (Moss), Mo5SiB2, (Mo,Ti)C, and (Mo,Ti)2C. The primary phases of the 70Mo and 65Mo alloys were Moss and T2, respectively. The compressive deformability of the 65Mo alloy was significantly limited even at 1600°C because of the elongated, coarse primary T2 phase, whereas the 70Mo alloy had good compressive deformability and a high strength in the test-temperature range of 1000–1600°C; the peak stresses were 1800 MPa at 1000°C, 1230 MPa at 1200°C, and 350 MPa at 1600°C. At and above 1200°C, the peak stress values were more than double those of Mo-6.7Si-7.9B, Ti-Zr-Mo, and Mo-Hf-C alloys. The plastic strain in the 70Mo alloy at temperatures lower than the ductile–brittle transition temperature of T2 was generated by plastic deformation of not only Moss but also of (Mo,Ti)C and (Mo,Ti)2C. This work indicates that (Mo,Ti)C and (Mo,Ti)2C play an important role in determining the high-temperature strength and deformation properties of TiC-added Mo-Si-B alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.M. Dimiduk and J.H. Perepezko, MRS Bull. 28, 639 (2003).

    Article  Google Scholar 

  2. R. Mitra, Int. Mater. Rev. 51, 13 (2006).

    Article  Google Scholar 

  3. P. Jain and K.S. Kumar, Acta Mater. 58, 2124 (2010).

    Article  Google Scholar 

  4. K. Ito, K. Ihara, K. Tanaka, M. Fujikura, and M. Yamaguchi, Intermetallics 9, 591 (2001).

    Article  Google Scholar 

  5. K. Yoshimi, S. Nakatani, N. Nomura, and S. Hanada, Intermetallics 11, 787 (2003).

    Article  Google Scholar 

  6. D.A. Helmick, G.H. Meier, and F.S. Pettit, Metall. Mater. Trans. A 36A, 3371 (2005).

    Article  Google Scholar 

  7. J.A. Lemberg and R.O. Ritchie, Adv. Mater. 24, 3445 (2012).

    Article  Google Scholar 

  8. J.J. Kruzic, J.H. Schneibel, and R.O. Ritchie, Metall. Mater. Trans. A 36A, 2393 (2005).

    Article  Google Scholar 

  9. R. Sakidja and J.H. Perepezko, Metall. Mater. Trans. A 36A, 507 (2005).

    Article  Google Scholar 

  10. R. Sakidja, J.H. Perepezko, S. Kim, and N. Sekido, Acta Mater. 56, 5223 (2008).

    Article  Google Scholar 

  11. J.H. Perepezko and R. Sakidja, JOM 65, 307 (2013).

    Article  Google Scholar 

  12. Y. Yang, Y.A. Chang, L. Tan, and W. Cao, Acta Mater. 53, 1711 (2005).

    Article  Google Scholar 

  13. Y. Yang, H. Bei, J. Tiley, and E.P. George, J. Alloys Compd. 556, 32 (2013).

    Article  Google Scholar 

  14. M. Krüger, D. Schliephake, P. Jain, K.S. Kumar, G. Schumacher, and M. Heilmaier, JOM 65, 301 (2013).

    Article  Google Scholar 

  15. S. Majumdar, D. Schliephake, B. Gorr, H.-J. Christ, and M. Heilmaier, Metall. Mater. Trans. A 44A, 2243 (2013).

    Article  Google Scholar 

  16. D. Schliephake, M. Azim, K.V. Klinski-Wetzel, B. Gorr, H.-J. Christ, H. Bei, E.P. George, and M. Heilmaier, Metall. Mater. Trans. A 45A, 1102 (2014).

    Article  Google Scholar 

  17. S. Miyamoto, K. Yoshimi, S.-H. Ha, T. Kaneko, J. Nakamura, T. Sato, K. Maruyama, R. Tu, and T. Goto, Metall. Mater. Trans. A 45A, 1112 (2014).

    Article  Google Scholar 

  18. A.P. Alur, N. Chollacoop, and K.S. Kumar, Acta Mater. 52, 5571 (2004).

    Article  Google Scholar 

  19. P. Villars and L.D. Calvert, eds., Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed., Vol. 2 (Materials Park, OH: ASM International, 1991), pp. 1950–1952.

    Google Scholar 

  20. S. Tsurekawa, H. Kurishita, and H. Yoshinaga, J. Nucl. Mater. 169, 291 (1989).

    Article  Google Scholar 

  21. H. Kurishita, R. Matsubara, J. Shiraishi, and H. Yoshinaga, J. Jpn. Inst. Met. 49, 1064 (1985).

    Google Scholar 

  22. S. Tsurekawa, M. Nakashima, and H. Yoshinaga, J. Jpn. Inst. Met. 58, 994 (1994).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the funding program for Next Generation World-Leading Researchers (NEXT Program) (No. GR017) and the Advanced Low Carbon Technology Research and Development Program (ALCA) of the Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyosuke Yoshimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshimi, K., Nakamura, J., Kanekon, D. et al. High-Temperature Compressive Properties of TiC-Added Mo-Si-B Alloys. JOM 66, 1930–1938 (2014). https://doi.org/10.1007/s11837-014-1097-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1097-6

Keywords

Navigation