Skip to main content

Advertisement

Log in

Influence of Sulfur Content in Zn(O,S) Buffer Layer onto Copper Indium Gallium Sulfur-Based Solar Cells Through Surface Engineering at ZnO1−xSx/CIGS Interface

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Copper indium gallium sulfur (CIGS) solar cells show good efficiency; however, the buffer/absorber and absorber/back contact interfaces are the most critical factors affecting that efficiency. We have investigated CIGS-based solar cells with two different buffer layers, ZnO1−xSx and SnS2, a non-toxic alternative to CdS using a solar cell capacitance simulator. First, we propose a cell structure with a ZnO1−xSx/CIGS interface for different sulfur content in ZnO1−xSx. The band gap of ZnO1−xSx and the conduction band offset (∆Ec) at the ZnO1−xSx /CIGS interface can be tuned by the sulfur content, enabling high efficiency. We found that the ZnO1−xSx buffer layer with a sulfur composition S/(O + S) ratio of 0.85 leads to enhanced performance of CIGS solar cells up to 23.94%. Above 0.85, the performance of the solar cells is affected, depending on its thickness and the carrier concentration of both absorber and buffer layers. The CIGS solar cell performance was evaluated using SnS2 as a buffer layer. The results show that the efficiency of CIGS-based solar cells with Zn(O0.30S0.79) and with SnS2 is slightly different, at 23.54% and 23.44%, respectively. In addition, there is a difference in the open-circuit voltage (Voc) and short-circuit current density (Jsc) due to the reduction in the interface recombination and band structure at the buffer/CIGS interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All the data is included in the manuscript. Further data will be made available on reasonable request.

References

  1. A. Bouich, J. Marí-Guaita, F. Baig, Y.H. Khattak, B.M. Soucase, and P. Palacios, Nanomaterials 12(17), 3027 https://doi.org/10.3390/nano12173027 (2022).

    Article  Google Scholar 

  2. Pv-magazine, “Hanergy’s Solibro Achieves 18.72% CIGS Module Efficiency Record”, https://www.pv-magazine.com/2018/02/02/hanergys-solibro-achieves-18-72-cigs-module-efficiency-record. Accessed 1 Jun 2023.

  3. M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, and H. Sugimoto, IEEE J. Photovolt. 9, 1863 (2019).

    Article  Google Scholar 

  4. T. Feurer, P. Reinhard, E. Avancini, B. Bissig, J. Löckinger, P. Fuchs, R. Carron, T.P. Weiss, J. Perrenoud, S. Stutterheim, S. Buecheler, and A.N. Tiwari, Prog. Photovolt. Res. Appl. 25, 645 (2017).

    Article  Google Scholar 

  5. A. Bouich, J. Marí-Guaita, B.M. Soucase, and P. Palacios, Nanomaterials 12(17), 2901 (2022).

    Article  Google Scholar 

  6. J. Marí-Guaita, A. Bouich, and B. Marí, JOM 74, 1 (2022).

    Article  Google Scholar 

  7. V. Achard, M. Balestrieri, S. Bechu, M. Jubault, M. Bouttemy, L. Lombez, T. Hildebrandt, N. Naghavib, A. Etcheberry, D. Lincot, and F. Donsanti, Thin Solid Films 669, 494 (2019).

    Article  Google Scholar 

  8. M.A. Shafi, A. Bouich, K. Fradi, J.M. Guaita, L. Khan, et al., Optik 258, 168854 (2022).

    Article  Google Scholar 

  9. J.Y. Park, R.B.V. Chalapathy, A.C. Lokhande, C.W. Hong, and J.H. Kim, J. Alloys Compd. 695, 2652 (2017).

    Article  Google Scholar 

  10. C. Zhang, K. Alberi, C. Honsberg, and K. Park, Appl. Surf. Sci. 549, 149245 (2021).

    Article  Google Scholar 

  11. Z. Zhao, Y. Cao, J. Yi, X. He, C. Ma, and J. Qiu, ChemPhysChem 13, 1551 (2012).

    Article  Google Scholar 

  12. X. Gu, W. Cui, H. Li, Z. Wu, Z. Zeng, S.T. Lee, H. Zhang, and B. Sun, Adv. Energy Mater. 3, 1262 (2013).

    Article  Google Scholar 

  13. T. Ericson, J.J. Scragg, A. Hultqvist, J.T. Wätjen, P. Szaniawski, T. Törndahl, and C. Platzer-Björkman, IEEE J. Photovolt. 4, 465 (2013).

    Article  Google Scholar 

  14. S. Polivtseva, N. Spalatu, A. Abdalla, O. Volobujeva, J. Hiie, and S. Bereznev, ACS Appl. Energy Mater. 1, 6505 (2018).

    Article  Google Scholar 

  15. D. Hironiwa, N. Matsuo, J. Chantana, N. Sakai, T. Kato, H. Sugimoto, and T. Minemoto, Phys. Status Solidi 212, 2766 (2015).

    Article  Google Scholar 

  16. K. Sun, C. Yan, F. Liu, J. Huang, F. Zhou, J.A. Stride, M. Green, and X. Hao, Adv. Energy Mater. 6, 1600046 (2016).

    Article  Google Scholar 

  17. S.M. Alqahtani, A.A. Baloch, S.S. Ahmed, and F.H. Alharbi, IEEE Trans. Electron Devices 67, 1666 (2020).

    Article  Google Scholar 

  18. M. Burgelman, P. Nollet, and S. Degrave, Thin Solid Films 361–362, 527 (2000).

    Article  Google Scholar 

  19. J. Verschraegen and M. Burgelman, Thin Solid Films 515, 6276 (2007).

    Article  Google Scholar 

  20. R.R. Thankalekshmi and A.C. Rastogi, J. Appl. Phys. 112, 063708 (2012).

    Article  Google Scholar 

  21. D.H. Cho, W.J. Lee, B. Shin, and Y.D. Chung, Appl. Surf. Sci. 486, 555 (2019).

    Article  Google Scholar 

  22. D.-H. Cho, W.-J. Lee, M.E. Kim, K. Kim, J.H. Yun, and Y.-D. Chung, J. Alloys Compd. 842, 155986 https://doi.org/10.1016/j.jallcom.2020.155986 (2020).

    Article  Google Scholar 

  23. C. Persson, C. Platzer-Björkman, J. Malmström, T. Törndahl, and M. Edoff, Phys. Rev. Lett. 97, 146403 (2006).

    Article  Google Scholar 

  24. C. Platzer-Björkman, T. Törndahl, D. Abou-Ras, J. Malmström, J. Kessler, and L. Stolt, J. Appl. Phys. 100, 044506 (2006).

    Article  Google Scholar 

  25. A. Bouich, J. Marí-Guaita, B. Sahraoui, P. Palacios, and B. Marí, Energy Res. 10, 840817 (2022).

    Google Scholar 

  26. A.O. Pudov, A. Kanevce, H.A. Al-Thani, J.R. Sites, and F.S. Hasoon, J. Appl. Phys. 97, 064901 (2005).

    Article  Google Scholar 

  27. A. Kumar, Superlattices Microstruct. 153, 106872 (2021).

    Article  Google Scholar 

  28. J. Marí-Guaita, A. Bouich, and B. Marí, Eng. Proc. 12(1), 1 (2021).

    Google Scholar 

  29. A. Bouich, J. Marí-Guaita, A. Bouich, I.G. Pradas, and B. Marí, Eng. Proc. 12(1), 81 (2022).

    Google Scholar 

  30. S. Bouazizi, W. Tlili, A. Bouich, B.M. Soucase, and A. Omri, Mater. Res. Express 9(9), 096402 (2022).

    Article  Google Scholar 

  31. A. Bouich, B. Mari, L. Atourki, S. Ullah, and M.E. Touhami, JOM 73(2), 551 (2021).

    Article  Google Scholar 

  32. A. Bouich, Study and Characterization of Hybrid Perovskites and Copper-Indium-Gallium Selenide Thin Films for Tandem Solar Cells. (Doctoral dissertation, Universitat Politècnica de València) (2021).

Download references

Funding

The author Amal Bouich postdoctoral researcher acknowledges Ministerio de Ciencia e Innovación (Spain) (MCIN) for funding support through Margarita Salas Fellowship (MCIN/AEI/10.13039/501100011033). Author N’Guessan Armel Ignace acknowledges his Erasmus + KA 107 grant. Author Amal Bouich acknowledged the post-doctoral contract supported by the RRHH, the Postdoctoral contract the Margarita Salas financed with Union European Next Generation EU. This research has been funded by Grant PID2019-107137RB-C22 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”.

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated in (a) conception and design or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content, and (c) approval of the final version.

Corresponding authors

Correspondence to Amal Bouich or Abdoulaye Touré.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

N’guessan, A.I., Bouich, A., Touré, A. et al. Influence of Sulfur Content in Zn(O,S) Buffer Layer onto Copper Indium Gallium Sulfur-Based Solar Cells Through Surface Engineering at ZnO1−xSx/CIGS Interface. JOM 75, 4332–4340 (2023). https://doi.org/10.1007/s11837-023-06018-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06018-8

Navigation