Skip to main content
Log in

Dynamic Basic Oxygen Steelmaking Process and Its Industry Validation

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The simulation of the basic oxygen steelmaking process was conducted, incorporating transient compositions, temperature, and weight of liquid steel and slag. The simulation utilized a 3-reactor model that considered the thermodynamics of chemical reactions and the kinetic limitations governed by mass transfer. Additionally, the kinetics of scrap dissolution were taken into account. To describe the different parts of the combined blown oxygen steelmaking converter (top and bottom), three interconnected adiabatic reactors were employed. The refining reactions of the basic oxygen steelmaking process were perceived using the macro programming facility of FactSage™ software. Based on the model, the scrap dissolution time was determined to be 510 s, 400 s, and 300 s for scrap radii of 0.25 m, 0.18 m, and 0.14 m, respectively. The model’s predictions aligned well with the plant data regarding the removal of carbon, silicon, and phosphorus with respect to blowing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E.T. Turkdogan, Fundamentals of Steelmaking (The Institute of Materials, London, 1996), pp209–244.

    Google Scholar 

  2. A. Ghosh, A. Chatterjee, Ironmaking and Steelmaking Theory and Practice, PHI learning private limited, Delhi, 2015, pp. 285–292.

  3. F.M. Penz, J. Schenk, R. Ammer, G. Kolsch, K. Pastucha, and M. Reischl, Materials. 7, 1 (2019).

    Google Scholar 

  4. G. Sethi, A. K. Shukla, P. C. Das, P. Chandra and B. Deo,(2004) Theoretical aspects of scrap dissolution in oxygen steelmaking converters. Paper presented at AISTech—Iron SteelTechnol. Conf. Proc., 2, 915.

  5. T.W. Miller, J. Jimenez, A. Sharan, D.A Goldstein, The Making, Shaping, and Treating Of Steel, 11th ed.; Carnegie Steel Company: Pittsburgh, PA, USA, (1998)

  6. D. Guo, D. Swickard, M. Alavanja, and J. Bradley, Iron Steel Technol. 10, 125 (2013).

    Google Scholar 

  7. F.M. Penz, J. Schenk, R. Ammer, G. Klösch, and K. Pastucha, Metals. 8(12), 1078 (2018).

    Article  Google Scholar 

  8. A. Kruskopf and L. Holappa, Metall. Res. Technol. 115(2), 201 (2018).

    Article  Google Scholar 

  9. A.K. Shukla, B. Deo, and D.G. Robertson, Metall. Mater. Trans. B. 44, 1407–1427 (2013).

    Article  Google Scholar 

  10. F. Pahlevani, S. Kitamura, H. Shibata, and N. Omaruoka, ISIJ Int. 50, 822 (2010).

    Article  Google Scholar 

  11. A.K. Shukla, B. Deo, S. Millman, B. Snoeijer, A. Overbosch, and A. Kapilashrami, Steel Res. Int. 81, 940 (2010).

    Article  Google Scholar 

  12. F. Pahlevani, S. Kitamura, H. Shibata, and N. Maruoka, Steel Res. Int. 81, 617 (2010).

    Article  Google Scholar 

  13. N. Kikuch, ISIJ Int. 60, 2731 (2020).

    Article  Google Scholar 

  14. G. Li, B. Wang, Q. Liu, X. Tian, R. Zhu, L. Hu, and G. Cheng, Int. J. Miner. Metall. Mater 17, 715 (2010).

    Article  Google Scholar 

  15. S. Ohguchi, D.G.C. Robertson, B. Deo, P. Grieveson, and J.H.E. Jeffes, Ironmak. Steelmak. 11, 202 (1984).

    Google Scholar 

  16. Y. Ogasawara, Y. Miki, Y. Uchida, and N. Kikuchi, ISIJ Int. 53, 1786 (2013).

    Article  Google Scholar 

  17. H. Jalkanen and L. Holappa, On the Role of Slag in Oxygen Converter Process. Paper presented at VII Int. Conf. on Molten Slags Fluxes Salts, The South African Institute of Mining and Metallurgy, 71(2004)

  18. I.H. Jung, P. Hudon, M.A. Van Ende, and W.Y. Kim, AISTech Iron Steel Technol. Conf. Proc. 1, 1257 (2014).

    Google Scholar 

  19. N. Dogan, G.A. Brooks, and M.A. Rhamdhani, ISIJ Int. 51, 1086 (2011).

    Article  Google Scholar 

  20. N. Dogan, G.A. Brooks, and M.A. Rhamdhani, ISIJ Int. 51, 1102 (2011).

    Article  Google Scholar 

  21. N. Dogan, G.A. Brooks, and M.A. Rhamdhani, ISIJ Int. 51, 1093 (2011).

    Article  Google Scholar 

  22. J. Biswas, S. Ghosh, N.B. Ballal, and S. Basu, Metall. Mater. Trans. B 52, 1309 (2021).

    Article  Google Scholar 

  23. A. Kruskopf and V.V. Visuri, Metall. Mater. Trans. B. 48, 3281–3300 (2017).

    Article  Google Scholar 

  24. R. Sarkar, P. Gupta, S. Basu, and N.B. Ballal, Metall. Mater. Trans. B. 46b, 961 (2015)

  25. A. Rahnama, Z. Li, and S. Sridhar, Processes. 8, 1 (2020).

    Article  Google Scholar 

  26. S. Ghosh, N.B. Ballal, and N.N. Viswanathan, Miner. Process. Extr. Metall. Trans. Inst. Min. Metall. 128, 17 (2019).

    Google Scholar 

  27. L. De Vos, I. Bellemans, C. Vercruyssen, and K. Verbeken, Metall. Mater. Trans. B. 50, 2647–2666 (2019).

    Article  Google Scholar 

  28. W. Knoop, B. Deo, A. Snoeijer, G. Unen, and R. Boom, Proc. 4th Int. Conf. Molten Slags Fluxes, ISIJ, 302(1992)

  29. B. Deo, P. Ranjan, and A. Kumar, Steel Res. Int. 58, 427 (1987).

    Article  Google Scholar 

  30. FactSage, Center for research in chemical thermodynamics, Polytechnique de Montreal, Canada. www.factsage.com, (2021)

  31. A.K. Shukla, Trans. Indian Inst. Metals. 7(72), 767–775 (2019).

    Article  Google Scholar 

  32. A. Kadrolkar and N. Dogan, Metals 9(3), 309 (2019).

    Article  Google Scholar 

  33. D.G.C. Robertson, B. Deo, and S. Ohguchi, Ironmak. Steelmak. 11, 41 (1984).

    Google Scholar 

  34. S. Ohguch, D.G.C. Robertson, B. Deo, P. Grieveson, and J.H.E. Jeffes, Ironmak. Steelmak. 11, 202 (1984).

    Google Scholar 

  35. D.G.C Robertson, Advanced steel refining technology symposium, IMRAM, Tohoku University, Sendai, 1(2008)

  36. K. Krishnapisharody and G.A. Irons, Steel Res. Int. 81, 880 (2010).

    Article  Google Scholar 

  37. K. Isobe, H. Maede, K. Ozawa, K. Umezawa, and C. Saito, Tetsu-to-Hagane. 76, 2033 (1990).

    Article  Google Scholar 

  38. C. Cicutti, M. Valdez, T. Perez, J. Petroni, A. Gomez, R. Donayo, and L. Ferro, a study of slag-metal reactions in an ld-lbe converter. Paper presented at 6th Int. Conf. on Molten Slags, Fluxes, and Salts, Stockholm- Helsinki, 1(2000)

  39. A. K. Shukla, S. Pande, C. Srishilan, D. Satish Kumar and K. Marutiram, Static and dynamic control model of BOF steelmaking process and its validation with steel plant data. Paper presented at AISTech Iron Steel Technology conf. Proc. 997(2019)

  40. P. Singha, Iron and Steelmak (2023).

  41. A.K. Shukla and P. Singha, Metals. 12, 638 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge JSW Steel Ltd., India, for providing the plant data used to validate the models developed in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasenjit Singha.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Wt. of liquid melt = 145000 Kg

Number of openings in lance = 6

Bath Depth (H) = 1.40 m

Bottom Stirring Flow Rate (Q) = 2.5 Nm3/min

Total metal surface area (\(A_{p}\)) = 0.0773 m2

The density of liquid metal (\(\rho_{m}\)) = 7200 kg/m3

A blowing Regime is defined as the following:

If 0 < t < 135 s; Lance height (h) = 2.30 m

If 135 < t < t < 350 s; Lance Height (h) = 1.90 m

If t > 350 s; Lance Height (h) = 170 cm

Appendix 2

Scrap dissolution model

The following value is taken from [Ref: 4]

[A = 5.4, β = 0.0000062, \(T^{\prime}\) = 1810–90C, 0 \(\le C \le 4.27\)

\(T^{\prime} = 1425 \), C \(\ge 4.27\), \(\gamma = \rho C_{p}^{{{\text{sc}}}} \beta\) and \(C_{p}^{{{\text{sc}}}} = 17.49 + 24.769 \times 10^{ - 3 }\) T, (J/mol-K)

Increasing the temperature of liquid metal to interface temperature due to scrap melting is

$$ \Delta H_{{{\text{Fe}}}} = \Delta h + C_{p}^{{{\text{sc}}}} \left( {T_{m} - T^{\prime}} \right) $$
(23)

Estimation of the temperature inside scrap is

$$ T_{sc} \left( {x,t} \right) = T^{\prime} + \mathop \sum \limits_{n = 1}^{\infty } A_{n } \sin \frac{n\pi x}{{2L}} {\text{exp}}\left( { - \gamma^{2} Dt} \right) $$
(24)

The melting rate of scrap v (m/s), into liquid iron was We obtained scrap melting velocity v (m/s), by conservation of heat equation at the solid-melt interface, which is

$$ k_{h} A\left( {T_{m} - T^{\prime}} \right) = \rho A\left( { - \Delta H_{{{\text{Fe}}}} } \right)v - \gamma A\frac{{\partial T_{{{\text{sc}}}} \left( {x,t} \right)}}{\partial x} $$
(25)

The amount of scrap melting per sec is

$$ \frac{{{\text{d}}W_{{{\text{sc}}}} }}{{{\text{d}}t}} = \rho Av $$
(26)

Fe-Fe3C (%0.51 Si, % 0.36 Mn)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singha, P., Shukla, A.K. Dynamic Basic Oxygen Steelmaking Process and Its Industry Validation. JOM 75, 3890–3899 (2023). https://doi.org/10.1007/s11837-023-06003-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-06003-1

Navigation