Skip to main content
Log in

Computational Design of Bio-inspired Mechanical Metamaterials Based on Lipidic Cubic Phases

  • Biological Translation: Biological Materials Science and Bioinspired Design
  • Published:
JOM Aims and scope Submit manuscript

Abstract

We report a family of designs and numerical simulations of cubic elastic metamaterials inspired by lipidic cubic phases (LCPs). Since LCPs are triply periodic minimal surfaces spontaneously formed in natural physical and chemical processes, our designs can be suitable candidates for high-throughput fabrication through self-assembly. This potential advantage may overcome the challenge of time cost in the traditional unit-by-unit additive manufacturing processes. We analyze the bio-inspired designs of primitive, gyroid, and diamond configurations by focusing on their geometry, symmetry, and elastic behaviors. We lay out the detailed numerical simulation procedures to extract the effective macroscopic elastic moduli of cubic metamaterials. We proceed with parametric studies regarding internal surface thickness and constituent base material properties. We also discuss their implications in terms of the metamaterials’ isotropy and compressibility. Our results can provide guidelines for next-generation elastic metamaterials that can be massively produced with high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Ma and P. Sheng, Sci. Adv. 2, e1501595 (2016).

  2. T. Jiang, Q. He, and Z.-K. Peng, Appl. Phys. Lett. 112, 261902 (2018).

  3. T.A. Schaedler, A.J. Jacobsen, A. Torrents, A.E. Sorensen, J. Lian, J.R. Greer, L. Valdevit, and W.B. Carter, Science 334, 962 (2011).

  4. A.N. Norris, Proceed Royal Soc. A: Math. Phys. Eng. Sci. 464, 2411 (2008).

  5. C. Kern, M. Kadic, M. Wegener, Appl. Phys. Lett. 107, 132103 (2015).

  6. C. Kern, V. Schuster, M. Kadic, and M. Wegener, Phys. Rev. Appl. 7, 044001 (2017).

  7. T. Bückmann, M. Thiel, M. Kadic, R. Schittny, and M. Wegener, Nature Commun. 5, 1 (2014).

  8. T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener, Adv. Mater. 24, 2710 (2012).

  9. T. Bückmann, M. Kadic, N. Stenger, M. Thiel, and M. Wegener, On the Feasibility of Pentamode Mechanical Metamaterials, In: The Sixth International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (2012).

  10. Y. Xiao, M. Borgh, A. Blinova, T. Ollikainen, J. Ruostekoski, and D. Hall, Topological Superfluid Defects with Discrete Point Group Symmetries, arXiv preprint arXiv:2203.08186 (2022).

  11. J. Park, J.R. Youn, and Y.S. Song, Phys. Rev. Appl. 12, 061002 (2019).

  12. W. Zhang, Q. Song, W. Zhu, Z. Shen, P. Chong, D.P. Tsai, C. Qiu, and A.Q. Liu, Adv. Phys.: X 3, 1417055 (2018).

  13. P. Verma, J. Ubaid, K.M. Varadarajan, B.L. Wardle, and S. Kumar, ACS Appl. Mater. Interfaces. 14, 8361 (2022).

  14. I. Giorgio, M. Spagnuolo, U. Andreaus, D. Scerrato, and A.M. Bersani, Math. Mech. Solids 26, 1074 (2021).

  15. V.A. Lvov, F.S. Senatov, A.A. Veveris, and V.A. Skrybykina, Materials 15, 1439 (2022).

  16. C.R. Garcia, J. Correa, D. Espalin, J.H. Barton, R.C. Rumpf, R. Wicker, and V. Gonzalez, Prog. Electromagnet. Res. Lett. 34, 75 (2012).

  17. S. Kumar, J. Ubaid, R. Abishera, A. Schiffer, and V. Deshpande, ACS Appl. Mater. Interfaces 11, 42549 (2019).

  18. K. Mohammadi, M.R. Movahhedy, I. Shishkovsky, and R. Hedayati, Appl. Phys. Lett. 117, 061901 (2020).

  19. J. Baena, L. Jelinek, and R. Marqués Phys. Rev. B 76, 245115 (2007).

  20. A. Jones, M. Leary, S. Bateman, and M. Easton, J. Mater. Process. Technol. 296, 117179 (2021).

  21. S. Kazemahvazi, N. Khokar, S. Hallstrom, H. Wadley, and V. Deshpande, Compos. Sci. Technol. 127, 95 (2016).

  22. L.R. Meza, J.M. Schormans, J.J. Remmers, and V.S. Deshpande, J. Mech. Phys. Solids 125, 276 (2019).

  23. S. Das, K. Kandan, S. Kazemahvazi, H.N. Wadley, and V.S. Deshpande, J. Mater. Res. 33, 317 (2018).

  24. P.G. Adams, K.L. Swingle, W.F. Paxton, J.J. Nogan, L.R. Stromberg, M.A. Firestone, H. Mukundan, and G.A. Montaño, Sci. Rep. 5, 10331 (2015).

  25. R. Parthasarathy and J.T. Groves, Proc. Natl. Acad. Sci. 101, 12798 (2004).

  26. M. Rappolt, A. Hickel, F. Bringezu, and K. Lohner, Biophys. J. 84, 3111 (2003).

  27. M. Caffrey, Acta Crystallogr. Sect. F: Struct. Biol. Commun. 71, 3 (2015).

  28. E.M. Landau, J.P. Rosenbusch, Proc. Natl. Acad. Sci. 93, 14532 (1996).

  29. A. Chonn, S.C. Semple, and P.R. Cullis, J. Biol. Chem. 267, 18759 (1992).

  30. M.J. Moghaddam, L. De Campo, L.J. Waddington, A. Weerawardena, N. Kirby, and C.J. Drummond, Soft Matter 7, 10994 (2011).

  31. J.W. Lee, J.H. Park, and J.R. Robinson, J. Pharm. Sci. 89, 850 (2000).

  32. H. Yin, X. Huang, F. Scarpa, G. Wen, Y. Chen, and C. Zhang, Compos. Struct. 192, 516 (2018).

  33. H. Yuk, B. Lu, and X. Zhao, Chem. Soc. Rev. 48, 1642 (2019).

  34. Y. Li, X. Bai, T. Yang, H. Luo, and C.-W. Qiu, Nat. Commun. 9, 273 (2018).

  35. G. Rummel, A. Hardmeyer, C. Widmer, M.L. Chiu, P. Nollert, K.P. Locher, I. Pedruzzi, E.M. Landau, and J.P. Rosenbusch, J. Struct. Biol. 121, 82 (1998).

  36. V. Cherezov, J. Clogston, M.Z. Papiz, and M. Caffrey, J. Mol. Biol. 357, 1605 (2006).

  37. Y. Kang, X.E. Zhou, X. Gao, Y. He, W. Liu, A. Ishchenko, A. Barty, T.A. White, O. Yefanov, G.W. Han, and Q. Xu, Nature 523, 561 (2015).

  38. Y. La, C. Park, T.J. Shin, S.H. Joo, S. Kang, and K.T. Kim, Nat. Chem. 6, 534 (2014).

  39. R. Negrini and R. Mezzenga, Langmuir 28, 16455 (2012).

  40. A.I. Tyler, H.M. Barriga, E.S. Parsons, N.L. McCarthy, O. Ces, R.V. Law, J.M. Seddon, and N.J. Brooks, Soft Matter 11, 3279 (2015).

  41. J.M. Seddon, A.M. Squires, C.E. Conn, O. Ces, A.J. Heron, X. Mulet, G.C. Shearman, and R.H. Templer, Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci. 364, 2635 (2006).

  42. V. Vitkova and A.G. Petrov, Lipid Bilayers and Membranes: Material Properties, In: Advances in planar lipid bilayers and liposomes, Vol. 17 ( Elsevier) pp. 89–138 , (2013).

  43. J. Briggs and M. Caffrey, Biophys. J. 66, 573 (1994).

  44. M. Caffrey, Curr. Opin. Struct. Biol. 10, 486 (2000).

  45. M. Caffrey and V. Cherezov, Nat. Protoc. 4, 706 (2009).

  46. J. Jouhet, Front. Plant Sci. 4, 494 (2013).

  47. A. Ridolfi, B. Humphreys, L. Caselli, C. Montis, T. Nylander, D. Berti, M. Brucale, and F. Valle, Colloids Surf., B 210, 112231 (2022).

  48. D.L. Gater, V. Réat, G. Czaplicki, O. Saurel, A. Milon, F. Jolibois, and V. Cherezov, Langmuir 29, 8031 (2013).

  49. O. Al-Ketan, D.-W. Lee, R. Rowshan, and R.K.A. Al-Rub, J. Mech. Behav. Biomed. Mater. 102, 103520 (2020).

  50. E. Yang, M. Leary, B. Lozanovski, D. Downing, M. Mazur, A. Sarker, A. Khorasani, A. Jones, T. Maconachie, S. Bateman, and M. Easton, Mater. Design 184, 108165 (2019).

  51. T. Maconachie, R. Tino, B. Lozanovski, M. Watson, A. Jones, C. Pandelidi, A. Alghamdi, A. Almalki, D. Downing, M. Brandt, and M. Leary, Int. J. Adv. Manuf. Technol. 107, 4449 (2020).

  52. D. Downing, A. Jones, M. Brandt, and M. Leary, Mater. Design 197, 109096 (2021).

  53. C. Speziale, R. Ghanbari, and R. Mezzenga, Langmuir 34, 5052 (2018).

  54. F. Greco, L. Leonetti, A. Pranno, and S. Rudykh, Compos. Struct. 233, 111625 (2020).

  55. M.M. Alam and K. Aramaki, J. Colloid Interface Sci. 336, 329 (2009).

  56. M.M. Alam and R. Mezzenga, Langmuir 27, 6171 (2011).

  57. R. Mezzenga, C. Meyer, C. Servais, A.I. Romoscanu, L. Sagalowicz, and R.C. Hayward, Langmuir 21, 3322 (2005).

  58. L. Sagalowicz, R. Mezzenga, and M.E. Leser, Current Opinion in Coll. Interface Sci. 11, 224 (2006).

  59. C. Rodriguez-Abreu, D.P. Acharya, K. Aramaki, and H. Kunieda, Coll. Surf., A 269, 59 (2005).

  60. C. Rodríguez-Abreu, M. García-Roman, and H. Kunieda, Langmuir 20, 5235 (2004).

  61. M. Pouzot, R. Mezzenga, M. Leser, L. Sagalowicz, S. Guillot, and O. Glatter, Langmuir 23, 9618 (2007).

  62. H. Chung, M. Caffrey, Nature 368, 224 (1994).

  63. S. Jain, X. Gong, L. Scriven, and F.S. Bates, Phys. Rev. Lett. 96, 138304 (2006).

  64. V. Percec, D.A. Wilson, P. Leowanawat, C.J. Wilson, A.D. Hughes, M.S. Kaucher, D.A. Hammer, D.H. Levine, A.J. Kim, F.S. Bates, and K.P. Davis, Science 328, 1009 (2010).

  65. I. Maskery, L. Sturm, A.O. Aremu, A. Panesar, C.B. Williams, C.J. Tuck, R.D. Wildman, I.A. Ashcroft, and R.J. Hague, Polymer 152, 62 (2018).

  66. D.W. Abueidda, R.K.A. Al-Rub, A.S. Dalaq, D.-W. Lee, K.A. Khan, and I. Jasiuk, Mech. Mater. 95, 102 (2016).

  67. D.W. Abueidda, I. Jasiuk, and N.A. Sobh, Mater. Design 145, 20 (2018).

  68. D.W. Abueidda, M. Elhebeary, C.-S.A. Shiang, S. Pang, R.K.A. Al-Rub, and I.M. Jasiuk, Materi. Design 165, 107597 (2019).

  69. D.W. Abueidda, M. Bakir, R.K.A. Al-Rub, J.S. Bergström, and N.A. Sobh, I. Jasiuk, Mater. Design 122, 255 (2017).

  70. K.A. Khan and R.K.A. Al-Rub, Int. J. Mech. Sci. 126, 106 (2017).

  71. K.A. Khan and R.K. Abu Al-Rub, J. Eng. Mech. 144, 04018029 (2018).

  72. K.A. Khan and R.K. Abu Al-Rub, Mech. Adv. Mater. Struct. 27, 775 (2020).

  73. S. Restrepo, S. Ocampo, J. Ramírez, C. Paucar, and C. García, J. Phys.: Conf. Series 935, 012036 (2017).

  74. L. Zhang, S. Feih, S. Daynes, S. Chang, and M.Y. Wang, J. Wei, W.F. Lu, Addit. Manuf. 23, 505 (2018).

  75. O. Al-Ketan, R. Rowshan, and R.K.A. Al-Rub, Addit. Manuf. 19, 167 (2018).

  76. M. Afshar, A.P. Anaraki, H. Montazerian, and J. Kadkhodapour, J. Mech. Behav. Biomed. Mater. 62, 481 (2016).

  77. S.M. Giannitelli, D. Accoto, M. Trombetta, and A. Rainer, Acta Biomater. 10, 580 (2014).

  78. A. Jones, M. Leary, S. Bateman, and M. Easton, Softw. Impacts 10, 100167 (2021).

  79. O. Al-Ketan and R.K. Abu Al-Rub, Mslattice, Mater. Design Process. Commun. 3, e205 (2021).

  80. A.N. Norris, Proceed. Royal Soc. A: Math. Phys. Eng. Sci. 462, 3385 (2006).

  81. M.A. Hayes, A.N. Norris, and Q., J. Mech. Appl. Math. 45, 141 (1992).

  82. A.N. Norris and Q., J. Mech. Appl. Math. 42, 413 (1989).

  83. P. Paufler, Acta Crystallogr. Sect. A: Found. Crystallograp. 62, 316 (2006).

  84. S. Timoshenko and J.N. Goodier, Theory of Elasticity: by S. Timoshenko and JN Goodier ( McGraw-Hill), (1951).

  85. T. Thomas, Proc. Natl. Acad. Sci. 55, 235 (1966).

  86. J.F. Nye et al., Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press), (1985).

  87. L. Landau and E. Lifshitz, Theory of Elasticity. Butterworth-heinemann (1986).

  88. T. Ting, Math. Mech. Solids 1, 301 (1996).

  89. D. Royer and E. Dieulesaint, Elastic Waves in Solids I: Free and Guided Propagation (Springer Science & Business Media), (1999).

  90. J.R. Barber, Elasticity Springer, (2002).

  91. J.J.M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media (Elsevier, 2007).

  92. M.H. Sadd, Elasticity: Theory, Applications, and Numerics (Academic Press, 2009).

  93. A.I. Lurie, Theory of Elasticity (Springer Science & Business Media), (2010).

  94. R. Brannon, Rotation, Reflection, Frame Changes, In: Orthogonal Tensors in Computational Engineering Mechanics (IOP Publishing), (2018).

  95. H. Le Quang, Q.-C. He, and N. Auffray, Proceed. Royal Soc. A 477, 20210165 (2021).

  96. J.N. Reddy, An Introduction to Continuum Mechanics (Cambridge University Press), (2013).

  97. P. Chadwick, M. Vianello, and S.C. Cowin, J. Mech. Phys. Solids 49, 2471 (2001).

  98. S.C. Cowin, Continuum Mechanics of Anisotropic Materials (Springer Science & Business Media, 2013).

  99. P. Zhang and P. Wang, Front. Mech. Eng. 7, 704192 (2021).

  100. G.M. Yunya L., Christian K., and P.W., A Soc. Eng. Sci. (2022).

  101. P. Wang, J. Shim, and K. Bertoldi, Phys. Rev. B 88, 014304 (2013).

  102. Q. Ma, L. Zhang, J. Ding, S. Qu, J. Fu, M. Zhou, M.W. Fu, X. Song, and M.Y. Wang, Addit. Manuf. 47, 102293 (2021).

  103. D. Regan, J. Williams, P. Borri, and W. Langbein, Langmuir 35, 13805 (2019).

  104. T. Jadidi, H. Seyyed-Allaei, M.R.R. Tabar, and A. Mashaghi, Front. Bioeng. Biotechnol. 2, 8 (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pai Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Liu, Y. & Wang, P. Computational Design of Bio-inspired Mechanical Metamaterials Based on Lipidic Cubic Phases. JOM 75, 2126–2136 (2023). https://doi.org/10.1007/s11837-023-05866-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05866-8

Navigation