Skip to main content
Log in

Effect of Temperature on the Lattice Strain Evolution in a Textured Alpha Titanium: Neutron Diffraction and Modelling

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Plastic deformation of titanium alloys depends on the temperature and the mechanical loading mode. It is accommodated by a complex mixture of slip and twinning systems. It remains nevertheless unclear which deformation modes are activated in the polycrystal during loading, especially with the temperature. To better understand the mechanical behaviour of textured α-Ti, neutron diffraction measurements have been performed to analyse the intergranular strain evolution under tensile tests at different temperatures ranging from ambient up to 300 °C. The material has then been characterized from meso- (grain) to macroscopic scales to obtain relevant information about the deformation mechanisms governing its global behaviour. An elastoplastic self-consistent approach has been used to explain and interpret the experimental observations achieved under thermomechanical loadings. The model has enabled us to successfully predict the measured macroscopic behaviour and lattice strain development. The study has also provided a comprehensive data set and a complete description of temperature influence onto the mechanical state and the plastic anisotropy, especially at the mesoscopic level. The evolutions of the deformation mode hierarchy and the internal stress fields with the temperature have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P.G. Partridge, Metall. Rev. 12, 169 (1967).

    Article  Google Scholar 

  2. H. Conrad, Prog. Mater. Sci. 26, 123 (1981).

    Article  Google Scholar 

  3. F.D. Rosi, F.C. Perkins, and L.L. Seigle, JOM 8, 115 (1956).

    Article  Google Scholar 

  4. S.P. Agrawal, G.A. Sargent, and H. Conrad, Metall. Trans. 4, 2613 (1973).

    Article  Google Scholar 

  5. C.J. McHargue, and J.P. Hammond, Acta Metall. 1, 700 (1953).

    Article  Google Scholar 

  6. J.C. Williams, and M.J. Blackburn, Phys. Status Solidi 25, K1 (1968).

    Article  Google Scholar 

  7. A.M. Garde, and R.E. Reed-Hill, Metall. Trans. 2, 2885 (1971).

    Article  Google Scholar 

  8. Y. Fu, Y. Cheng, Y. Cui, Y. Xin, Y. Zeng, X. Liu, and G. Chen, J. Mater. Sci. Technol. 126, 237 (2022).

    Article  Google Scholar 

  9. S. Nemat-Nasser, W.G. Guo, and J.Y. Cheng, Acta Mater. 47, 3705 (1999).

    Article  Google Scholar 

  10. C.P. Jiang, and Z.H. Huang, Key Eng. Mater. 626, 548 (2015).

    Article  Google Scholar 

  11. N.P. Gurao, R. Kapoor, and S. Suwas, Acta Mater. 59, 3431 (2011).

    Article  Google Scholar 

  12. J. C. Williams, R. G. Baggerly, and N. E. Paton, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 33, 837 (2002).

  13. S. Balasubramanian, and L. Anand, Acta Mater. 50, 133 (2002).

    Article  Google Scholar 

  14. A. Akhtar, Metall. Trans. A 6, 1105 (1975).

    Article  Google Scholar 

  15. N.E. Paton, and W.A. Backofen, Metall. Trans. 1, 2839 (1970).

    Article  Google Scholar 

  16. A. Akhtar, and E. Teghtsoonian, Metall. Mater. Trans. A 6, 2201 (1975).

    Article  Google Scholar 

  17. R.E. Lim, D.C. Pagan, D.E. Boyce, J.V. Bernier, P.A. Shade, and A.D. Rollett, Mater. Charact. 174, 110943 (2021).

    Article  Google Scholar 

  18. A. Orozco-Caballero, F. Li, D. Esqué-de los Ojos, M. D. Atkinson, and J. Quinta da Fonseca, Acta Mater. 149, 1 (2018).

  19. K. Kishida, J.G. Kim, T. Nagae, and H. Inui, Acta Mater. 196, 168 (2020).

    Article  Google Scholar 

  20. V. Hauk, Structural and Residual Stress Analysis by Nondestructive Methods (Elsevier, Amsterdam, 1997).

    MATH  Google Scholar 

  21. A. Baczmański, Y. Zhao, E. Gadalińska, L. Le Joncour, S. Wroński, C. Braham, B. Panicaud, M. François, T. Buslaps, and K. Soloducha, Int. J. Plast. 81, 102 (2016).

    Article  Google Scholar 

  22. B. Clausen, Riso Natl. Lab. Roskilde ISBN 985, 1 (1997).

  23. R. Dakhlaoui, C. Braham, and A. Baczmański, Mater. Sci. Eng. A 444, 6 (2007).

    Article  Google Scholar 

  24. D. Gloaguen, B. Girault, J. Fajoui, V. Klosek, and M.J. Moya, Mater. Sci. Eng. A 662, 395 (2016).

    Article  Google Scholar 

  25. O. Muránsky, D.G. Carr, M.R. Barnett, E.C. Oliver, and P. Šittner, Mater. Sci. Eng. A 496, 14 (2008).

    Article  Google Scholar 

  26. F. Xu, R.A. Holt, and M.R. Daymond, Acta Mater. 56, 3672 (2008).

    Article  Google Scholar 

  27. J.L.W. Warwick, J. Coakley, S.L. Raghunathan, R.J. Talling, and D. Dye, Acta Mater. 60, 4117 (2012).

    Article  Google Scholar 

  28. A.M. Stapleton, S.L. Raghunathan, I. Bantounas, H.J. Stone, T.C. Lindley, and D. Dye, Acta Mater. 56, 6186 (2008).

    Article  Google Scholar 

  29. D. Gloaguen, G. Oum, V. Legrand, J. Fajoui, M. J. Moya, T. Pirling, and W. Kockelmann, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 46, 5038 (2015).

  30. D. Gloaguen, G. Oum, V. Legrand, J. Fajoui, and S. Branchu, Acta Mater. 61, 5779 (2013).

    Article  Google Scholar 

  31. K.E. Agbovi, B. Girault, J. Fajoui, S. Kabra, W. Kockelmann, T. Buslaps, A. Poulain, and D. Gloaguen, Mater. Sci. Eng. A 819, 141489 (2021).

    Article  Google Scholar 

  32. J.L.W. Warwick, N.G. Jones, K.M. Rahman, and D. Dye, Acta Mater. 60, 6720 (2012).

    Article  Google Scholar 

  33. J.R. Cho, D. Dye, K.T. Conlon, M.R. Daymond, and R.C. Reed, Acta Mater. 50, 4847 (2002).

    Article  Google Scholar 

  34. E.C. Oliver, M.R. Daymond, J. Quinta Da Fonseca, and P.J. Withers, J. Neutron Res. 12, 33 (2004).

    Article  Google Scholar 

  35. M. S. Lee, T. Kawasaki, T. Yamashita, S. Harjo, Y. T. Hyun, Y. Jeong, and T. S. Jun, Sci. Rep. 12, (2022).

  36. H. Li, G. Sun, W. Woo, J. Gong, B. Chen, Y. Wang, Y.Q. Fu, C. Huang, L. Xie, and S. Peng, J. Nucl. Mater. 446, 134 (2014).

    Article  Google Scholar 

  37. C. Evans, N.G. Jones, D. Rugg, T.C. Lindley, and D. Dye, J. Nucl. Mater. 424, 123 (2012).

    Article  Google Scholar 

  38. P.A. Turner, and C.N. Tomé, Acta Metall. Mater. 42, 4143 (1994).

    Article  Google Scholar 

  39. B. Clausen, C.N. Tomé, D.W. Brown, and S.R. Agnew, Acta Mater. 56, 2456 (2008).

    Article  Google Scholar 

  40. L. Lutterotti, S. Matthies, H.-R. Wenk, A.S. Schultz, and J.W. Richardson, J. Appl. Phys. 81, 594 (1997).

    Article  Google Scholar 

  41. W. Kockelmann, L.C. Chapon, and P.G. Radaelli, Phys. B Condens. Matter I(639), 385–386 (2006).

    Google Scholar 

  42. A. C. Hannon, in Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. (North-Holland, 2005), pp. 88–107.

  43. J.R. Santisteban, M.R. Daymond, J.A. James, and L. Edwards, J. Appl. Crystallogr. 39, 812 (2006).

    Article  Google Scholar 

  44. C.M. Moreton-Smith, S.D. Johnston, and F.A. Akeroyd, J. Neutron Res. 4, 41 (1996).

    Article  Google Scholar 

  45. E. Tenckhoff, Deformation Mechanisms, Texture, and Anisotropy in Zirconium and Zircaloy (ASTM,Philadelphia, PA, United States, 1988).

  46. D.R. Chichili, K.T. Ramesh, and K.J. Hemker, Acta Mater. 46, 1025 (1998).

    Article  Google Scholar 

  47. D.W. Brown, S.R. Agnew, M.A.M. Bourke, T.M. Holden, S.C. Vogel, and C.N. Tomé, Mater. Sci. Eng. A 399, 1 (2005).

    Article  Google Scholar 

  48. P. Lipinski, and M. Berveiller, Int. J. Plast. 5, 149 (1989).

    Article  Google Scholar 

  49. P. Franciosi, M. Berveiller, and A. Zaoui, Acta Metall. 28, 273 (1980).

    Article  Google Scholar 

  50. D. Gloaguen, M. François, R. Guillen, and J. Royer, Phys. Status Solidi Appl. Res. 193, 12 (2002).

    Article  Google Scholar 

  51. E.S. Fisher, and C.J. Renken, Phys. Rev. 135, A482 (1964).

    Article  Google Scholar 

  52. R. J. Wasilewski, Trans. Met. Soc. AIME 221, (1961).

  53. L. Toth, and P. Van Houtte, Textures Microstruct. 19, 229 (1992).

    Article  Google Scholar 

  54. G. Simmons, H. Wang, and M.I.T. Press, Cambridge. Mass 197, 158 (1971).

    Google Scholar 

  55. R. Sánchez-Martín, C. Zambaldi, M.T. Pérez-Prado, and J.M. Molina-Aldareguia, Scr. Mater. 104, 9 (2015).

    Article  Google Scholar 

  56. C.J. Neil, J.A. Wollmershauser, B. Clausen, C.N. Tomé, and S.R. Agnew, Int. J. Plast. 26, 1772 (2010).

    Article  Google Scholar 

  57. G. Lutjering and J.C. Williams, Fundamental Aspects, Titanium (Engineering Materials and Processes) (Springer, Berlin, Heidelberg, 2007), pp. 15–52.

    Google Scholar 

  58. L. Dai, and W. Song, Int. J. Plast. 154, 103281 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the ISIS Neutron Facility committee for the allocated experimental days on ENGIN-X (experiment RB171006) and GEM (experiment RB1890207) instruments, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gloaguen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agbovi, K.E., Girault, B., Fajoui, J. et al. Effect of Temperature on the Lattice Strain Evolution in a Textured Alpha Titanium: Neutron Diffraction and Modelling. JOM 75, 3055–3066 (2023). https://doi.org/10.1007/s11837-023-05840-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05840-4

Navigation