Skip to main content
Log in

Correlation Between Cooling Rate and γ' Precipitate Size in Rene 95 Alloy Fabricated Through a Powder Metallurgy Process

  • Microstructural Evolution in Powder Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

We investigated the correlation between the cooling rate and the cooling γ′ (γc) precipitate size in a Rene 95 alloy. The alloy powders were prepared through an electrode induction gas atomization, and the powders were consolidated by hot isostatic pressing. The solution heat treatment was performed using a gas-quenching furnace, which can control the cooling rate via the gas pressure. The samples were annealed at a sub-solvus temperature of 1135°C, and argon was used as the quenching gas. Experiments were carried out under four conditions with quenching gas pressures of 1, 2, 3, and 9 bar. At these pressures, the cooling rate increased to 114.5°C/min, 157.1°C/min, 201.1°C/min, and 282.9°C/min, respectively. The average size of the γc at the cooling rate of 114.5°C/min was 133 nm, and it decreased to 88 nm at 282.9°C/min. The power law relation was used to derive the equation for predicting the γc size concerning the cooling rate, while the data obtained from this study and the results from a previous study were used to fit the power law equation. From the analysis, parameters of A and n were determined to 179.4 and 0.493, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Xie, S. Tian, X. Zhou, X. Yu, and W. Wang, Mater. Sci. Eng. A. 538, 306 (2012).

    Google Scholar 

  2. R.I. Ramakrishnan, and T.E. Howson, JOM. 44, 29 (1992).

    Google Scholar 

  3. K.O. Lee, K.H. Bae, and S.B. Lee, Mater. Sci. Eng. A. 519, 112 (2009).

    Google Scholar 

  4. W.M. Kane, U. Krupp, T. Jacobs, and C.J. McMahon, Mater. Sci. Eng. A. 402, 42 (2005).

    Google Scholar 

  5. C.E. Shamblen, R.E. Allen, and F.E. Walker, Metall. Mater. Trans. A. 6, 2073 (1975).

    Google Scholar 

  6. Z.Z. Lu, C.L. Liu, Z.F. Yue, and Y.L. Xu, Mater. Sci. Eng. A. 395, 153 (2005).

    Google Scholar 

  7. J. Xie, S. Tian, L.J. Shang, and X. Zhou, Mater. Sci. Eng. A. 606, 304 (2014).

    Google Scholar 

  8. A. Shyam, W.W. Milligan, S.A. Padula II., and S.I. Marras, Metall. Mater. Trans. A. 33, 1948 (2002).

    Google Scholar 

  9. M.T. Kim, D.S. Kim, and O.Y. Oh, Mater. Sci. Eng. A. 480, 218 (2008).

    Google Scholar 

  10. H. ElRakayby, H.K. Kim, S.S. Hong, and K.T. Kim, Adv. Powder Technol. 26, 1314 (2015).

    Google Scholar 

  11. W. Guo, J. Wu, F. Zhang, and M. Zhao, J. Iron Steel Res. Int. 13, 65 (2006).

    Google Scholar 

  12. T. Sugui, X. Jun, Z. Xiaoming, Q. Benjiang, L. Jianwei, Y. Lili, and W. Wuxiang, Mater. Sci. Eng. A. 528, 2076 (2011).

    Google Scholar 

  13. S. Terzi, R. Couturier, L. Guétaz, and B. Viguier, Mater. Sci. Eng. A. 483, 598 (2008).

    Google Scholar 

  14. S. Tian, J. Li, X. Zhou, A. Li, and F. Liang, Rare Met. 30, 457 (2011).

    Google Scholar 

  15. D. Locq, P. Caron, S. Raujol, F. Pettinari-Sturmel, A. Coujou and N. Clément, superalloys. 2004, 179 (2004).

  16. H.Y. Li, J.F. Sun, M.C. Hardy, H.E. Evans, and S.J. Williams, Acta Mater. 90, 355 (2015).

    Google Scholar 

  17. T. Xin, S. Tang, F. Ji, L. Cui, B. He, X. Lin, X. Tian, H. Hou, Y. Zhao, and M. Ferry, Acta Mater. 239, 118248 (2022).

    Google Scholar 

  18. Z. Huda, Mater. Des. 28, 1664 (2007).

    Google Scholar 

  19. T. Sugui, L. Yang, Z. Xiaoming, Z. Zhonggang, B. Xianyu, and W. Wuxiang, Chin. J. Aeronaut. 22, 444 (2009).

    Google Scholar 

  20. H. Ding, G. He, W. Xin, F. Liu, L. Huang, and L. Jiang, Trans. Nonferrous Met. Soc. China 28, 451 (2018).

    Google Scholar 

  21. H. Wu, Z. Huang, N. Zhou, J. Chen, P. Zhou, and L. Jiang, Mater. Sci. Eng. A. 739, 473 (2019).

    Google Scholar 

  22. M.P. Jackson, and R.C. Reed, Mater. Sci. Eng. A. 259, 85 (1999).

    Google Scholar 

  23. S.A. Sajjadi, H.R. Elahifar, and H. Farhangi, J. Alloy. Compd. 455, 215 (2008).

    Google Scholar 

  24. Y.Q. Chen, E. Francis, J. Robson, M. Preuss, and S.J. Haigh, Acta Mater. 85, 199 (2015).

    Google Scholar 

  25. L. Gong, B. Chen, L. Zhang, Y. Ma, and K. Liu, J. Mater. Sci. Technol. 34, 811 (2018).

    Google Scholar 

  26. X. Fan, Z. Guo, X. Wang, J. Yang, and J. Zou, Mater. Charact. 139, 382 (2018).

    Google Scholar 

  27. G. Huang, G.Q. Liu, M. Feng, M. Zhang, B. Hu, and H. Wang, J. Alloy. Compd. 747, 1062 (2018).

    Google Scholar 

  28. Q. Wang, Z. Zhao, P. Bai, W. Du, H. Liao, Y. Li, M. Liang, P. Huo, L. Zhang, and D. Tie, Adv. Compos. Hybrid Mater. 4, 195 (2021).

    Google Scholar 

  29. W. Chen, Y. Zhao, S. Yang, D. Zhang, and H. Hou, Adv. Compos. Hybrid Mater. 4, 371 (2021).

    Google Scholar 

  30. S. Cai, X. Luo, J. Peng, Z. Yu, H. Zhou, N. Liu, and X. Wang, Adv. Compos. Hybrid Mater. 4, 379 (2021).

    Google Scholar 

  31. Y. Zhao, K. Liu, H. Hou, and L.Q. Chen, Mater. Des. 216, 110555 (2022).

    Google Scholar 

  32. Z. Zhao, R. Zhao, P. Bai, W. Du, R. Guan, D. Tie, N. Naik, M. Huang, and Z. Guo, J. Alloy. Compd. 902, 163484 (2022).

    Google Scholar 

  33. B. Liu, G. Dong, X. Ren, Y. Zhang, and Y. Wei, Int. J. Mater. Res. 111, 872 (2020).

    Google Scholar 

  34. Z. Zhao, X. Xu, Q. Wang, P. Bai, W. Du, L. Zhang, and W. Wang, Adv. Compos. Hybrid Mater. 4, 332 (2021).

    Google Scholar 

  35. C. Papadaki, W. Li, and A.M. Korsunsky, Materials. 11, 1528 (2018).

    Google Scholar 

  36. D.U. Furrer, and H. Fecht, Scr. Mater. 40, 1215 (1999).

    Google Scholar 

  37. F. Masoumi, D. Shahriari, M. Jahazi, and J. Cormier, Sci Rep. 6, 28650 (2016).

    Google Scholar 

  38. P.R. Bhowal, E.F. Wright, and E.L. Raymond, Metall. Mater. Trans. A. 21, 1709 (1990).

    Google Scholar 

  39. C. Hou, W. Yang, H. Kimura, X. Xie, X. Zhang, X. Sun, Z. Yu, X. Yang, Y. Zhang, B. Wang, B.B. Xu, D. Sridhar, H. Algadi, Z. Guo, and W. Du, J. Mater. Sci. Technol. 142, 185 (2023).

    Google Scholar 

  40. W. Yang, D. Peng, H. Kimura, X. Zhang, X. Sun, R.A. Pashameah, E. Alzahrani, B. Wang, Z. Guo, W. Du, and C. Hou, Adv. Compos. Hybrid Mater. 5, 3146 (2022).

    Google Scholar 

  41. Y. Zhang, L. Liu, L. Zhao, C. Hou, M. Huang, H. Algadi, D. Li, Q. Xia, J. Wang, Z. Zhou, X. Han, Y. Long, Y. Li, Z. Zhang, and Y. Liu, Adv. Compos. Hybrid Mater. 5, 2601 (2022).

    Google Scholar 

  42. A.A.N. Németh, D.J. Crudden, D.E.J. Armstrong, D.M. Collins, K. Li, A.J. Wilkinson, C.R.M. Grovenor, and R.C. Reed, Acta Mater. 126, 361 (2017).

    Google Scholar 

  43. C.L. Qiu, M.M. Attallah, X.H. Wu, and P. Andrews, Mater. Sci. Eng. A. 564, 176 (2013).

    Google Scholar 

  44. M.O. Alniak, and F. Bedir, Mater. Sci. Eng. B. 130, 254 (2006).

    Google Scholar 

  45. M.S. Chiou, S.R. Jian, A.C. Yeh, C.M. Kuo, and J.Y. Juang, Mater. Sci. Eng. A. 655, 237 (2016).

    Google Scholar 

  46. J. Mao, K. Chang, W. Yang, K. Ray, S.P. Vaze, and D.U. Ferrer, Metall. Mater. Trans. A 32, 2441 (2001).

    Google Scholar 

  47. J. Mao, K. Chang, W. Yang, D.U. Furrer, K. Ray, and S.P. Vaze, Mater. Sci. Eng. A. 332, 318 (2002).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Creative Materials Discovery Program (No. NRF-2019M3D1A1079227) through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chan Bin Mo or Hyung-Ki Park.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.H., Park, JY., Hong, S.J. et al. Correlation Between Cooling Rate and γ' Precipitate Size in Rene 95 Alloy Fabricated Through a Powder Metallurgy Process. JOM 75, 2489–2496 (2023). https://doi.org/10.1007/s11837-023-05822-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05822-6

Navigation