Skip to main content

Advertisement

Log in

Novel Solanum torvum Fruit Biomass-Derived Hierarchical Porous Carbon Nanosphere as Excellent Electrode Material for Enhanced Symmetric Supercapacitor Performance

  • 2D Materials – Preparation, Properties & Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Biomass-based hierarchical porous carbon nanospheres offer an outstanding performance of electrode materials in electrochemical energy storage device applications. However, integrating all these advantages into one fabric is still a challenge. Therefore, this study aims to develop novel biomass of Solanum torvum fruit (STF) as a hierarchical porous carbon nanosphere source for high-quality electrode material for supercapacitor applications. The STF-based carbon nanospheres were synthesized with a green, sustainable strategy through ZnCl2 impregnation, carbonization, and physical activation. Through the 0.5 M ZnCl2, it was discovered that the carbon nanosphere maintains a dense spherical structure with enriched 3D "cow tripe-like" hierarchical pores. The optimized carbon nanosphere yielded a high specific surface area of 1176.29 m2g−1 with a nearly balanced combination of the micro-mesopores. The combination of the 3D hierarchical pore structure and densely packed nanospheres gave high electrochemical properties of the symmetric supercapacitor with a delightful specific capacitance of 154 Fg−1 at 1 Ag−1 in the H2SO4 electrolyte and high cyclic performance with coulombic efficiency ~ 84.5%. The energy density was boosted to 30.4 Whkg−1 in power density of 1.27 kWkg−1 5 Ag−1. Therefore, porous carbon nanospheres from novel STF biomass are ideal candidates as electrode materials for high-performance electrochemical energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Zhu, X. Huang, S. Anwer, N. Wang, and L. Zhang, Langmuir 36, 9284 (2020).

    Google Scholar 

  2. H. Sun, J. Zhu, D. Baumann, L. Peng, Y. Xu, I. Shakir, Y. Huang, and X. Duan, Nat. Rev. Mater. 4, 45 (2019).

    Google Scholar 

  3. J. Niu, R. Shao, M. Liu, Y. Zan, M. Dou, J. Liu, Z. Zhang, Y. Huang, and F. Wang, Adv. Funct. Mater. 1905095, 1 (2019).

    Google Scholar 

  4. P.R. Kharangarh, N.M. Ravindra, G. Singh, and S. Umapathy, Energy Storage 5, e390 (2022).

    Google Scholar 

  5. N. Yadav, P. Ritu, and S.A. Hashmi, Sustain. Energy Fuels 4, 1730 (2020).

    Google Scholar 

  6. P.R. Kharangarh, N.M. Ravindra, R. Rawal, A. Singh, and V. Gupta, J. Alloys Compd. 876, 159990 (2021).

    Google Scholar 

  7. P. Bhardwaj, S. Singh, P.R. Kharangarh, and A.N. Grace, Diam. Relat. Mater. 108, 107989 (2020).

    Google Scholar 

  8. Z. Bi, Q. Kong, Y. Cao, G. Sun, F. Su, X. Wei, X. Li, A. Ahmad, L. Xie, and C.-M. Chen, J. Mater. Chem. A 7, 16028 (2019).

    Google Scholar 

  9. P.R. Kharangarh, V. Gupta, A. Singh, P. Bhardwaj, and A. Nirmala, Diam. Relat. Mater. 107, 107913 (2020).

    Google Scholar 

  10. F. Guo, Y. Jiang, Z. Xu, H. Wang, and C. Gao, Nat. Commun. 9, 1 (2018).

    Google Scholar 

  11. S. Kumar, G. Saeed, L. Zhu, K. Nam, N. Hoon, and J. Hee, Chem. Eng. J. 403, 126352 (2021).

    Google Scholar 

  12. P.R. Kharangarh, N.M. Ravindra, G. Singh, and S. Umapathy, J. Energy Storage 55, 105388 (2022).

    Google Scholar 

  13. B. Yang, D. Zhang, W. She, J. Wang, S. Gao, Y. Wang, and K. Wang, J. Power Sources 492, 229666 (2021).

    Google Scholar 

  14. S.K. Tiwari, S. Sahoo, N. Wang, and A. Huczko, J. Sci. Adv. Mater. Devices 5, 10 (2020).

    Google Scholar 

  15. R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, R.M. Yadav, R. Kumar, D.P. Singh, W.K. Tan, A. Pérez, and S.A. Moshkalev, Nano Res. 12, 35 (2019).

    Google Scholar 

  16. K. Cendrowski, W. Kuku, and E. Mijowska, Mater. Res. Bull. 146, 111620 (2022).

    Google Scholar 

  17. Z. Husain, S.R.A.R.K.B. Ansari, A.B. Pandit, M.S. Khan, M.A. Qyyum, and S.S. Lam, Mater. Sci. Energy Technol. 5, 99 (2022).

    Google Scholar 

  18. M. Besir, H. Gürsu, M. Gencten, and Y. Sahin, J. Energy Storage 35, 102328 (2021).

    Google Scholar 

  19. W.-J. Liu, H. Jiang, and H.-Q. Yu, Energy Environ. Sci. 1751 (2019).

  20. H. Shao, Y. Wu, Z. Lin, P. Taberna, P. Simon, H. Shao, Y. Wu, Z. Lin, P. Taberna, and P. Simon, Chem. Soc. Rev. 49, 3005 (2020).

    Google Scholar 

  21. J. Wang, X. Zhang, Z. Li, Y. Ma, and L. Ma, J. Power Sources 451, 227794 (2020).

    Google Scholar 

  22. L. Luo, T. Chen, Z. Li, Z. Zhang, W. Zhao, and M. Fan, J. CO2 Util. 25, 89 (2018).

    Google Scholar 

  23. H. Chen, Y. Xiong, T. Yu, P. Zhu, X. Yan, Z. Wang, and S. Guan, Carbon N. Y. 113, 266 (2017).

    Google Scholar 

  24. C. Wang, H. Wang, B. Dang, Z. Wang, X. Shen, C. Li, and Q. Sun, Renew. Energy 156, 370 (2020).

    Google Scholar 

  25. D. Li, G. Chang, L. Zong, P. Xue, Y. Wang, Y. Xia, C. Lai, and D. Yang, Energy Storage Mater. 17, (2018).

  26. M. Liu, J. Niu, and Z. Zhang, Nano Energy 51, 366 (2018).

    Google Scholar 

  27. L. Guan, L. Pan, T. Peng, T. Qian, Y. Huang, X. Li, C. Gao, Z. Li, H. Hu, and M. Wu, Carbon N. Y. 152, 537 (2019).

    Google Scholar 

  28. Y. Ma, X. Zhang, Z. Liang, C. Wang, Y. Sui, B. Zheng, Y. Ye, W. Ma, Q. Zhao, and C. Qin, Electrochim. Acta 337, 135800 (2020).

    Google Scholar 

  29. Z. Dai, P. Ren, W. He, X. Hou, F. Ren, Q. Zhang, and Y.-L. Jin, Renew. Energy 162, 613 (2020).

    Google Scholar 

  30. L. Luo, L. Luo, J. Deng, T. Chen, G. Du, M. Fan, and W. Zhao, Int. J. Hydrogen Energy 46, 31927 (2021).

    Google Scholar 

  31. L. Zheng, M. Chen, S. Liang, and Q. Lü, Diam. Relat. Mater. 113, 108267 (2021).

    Google Scholar 

  32. Y. Xi, J. Cao, J. Li, P. Zhang, Y. Zhu, and W. Han, J. Energy Storage 37, 102470 (2021).

    Google Scholar 

  33. S. Meng, Z. Mo, Z. Li, R. Guo, and N. Liu, Mater. Chem. Phys. 246, 122830 (2020).

    Google Scholar 

  34. T. Ratnaji and L.J. Kennedy, Diam. Relat. Mater. 110, 108100 (2020).

    Google Scholar 

  35. V. Yang, R.A. Senthil, J. Pan, T.R. Kumar, Y. Sun, and X. Liu, J. Colloid Interface Sci. 579, 347 (2020).

    Google Scholar 

  36. Z. Liu, Z. Zhou, W. Xiong, and Q. Zhang, Langmuir 34, 10389 (2018).

    Google Scholar 

  37. L. Zheng, X. Dai, Y. Ouyang, Y. Chen, and X. Wang, J. Energy Storage 33, 102152 (2021).

    Google Scholar 

  38. T. Wang, Y. Xu, B. Shi, S. Gao, G. Meng, and K. Huang, React. Funct. Polym. 143, 104326 (2019).

    Google Scholar 

  39. P. Zhou, J. Wan, X. Wang, K. Xu, Y. Gong, and L. Chen, J. Colloid Interface Sci. 575, 96 (2020).

    Google Scholar 

  40. N. Díez, M. Sevilla, and A.B. Fuertes, Mater. Today NANO 16, 100147 (2021).

    Google Scholar 

  41. E. Taer, A. Apriwandi, D.R. Andani, and R. Taslim, J. Mater. Res. Technol. 15, 1732 (2021).

    Google Scholar 

  42. K. Yu, J. Wang, X. Wang, J. Liang, and C. Liang, Mater. Chem. Phys. 243, 122644 (2020).

    Google Scholar 

  43. S. Kavitha, Int. J. Early Child. Spec. Educ. 14, 9597 (2022).

    Google Scholar 

  44. M. Martina, J. Jumari, and M. Murningsih, J. Phys. Conf. Ser. 1943, 012076 (2021).

    Google Scholar 

  45. E. Taer, N. Yanti, W.S. Mustika, A. Apriwandi, R. Taslim, and A. Agustino, Int. J. Energy Res. 44, 10192 (2020).

    Google Scholar 

  46. C. Qin, H. Wang, X. Yuan, T. Xiong, J. Zhang, and J. Zhang, Chem. Eng. J. 382, 122977 (2020).

    Google Scholar 

  47. S.Y. Foong, R.K. Liew, Y. Yang, Y.W. Cheng, P.N.Y. Yek, W.A.W. Mahari, X.Y. Lee, C.S. Han, D.-V.N. Vo, Q. Van Le, M. Aghbashlo, M. Tabatabaei, C. Sonne, W. Peng, and S.S. Lam, Chem. Eng. J. 389, 124401 (2020).

    Google Scholar 

  48. A. Apriwandi, E. Taer, R. Farma, R.N. Setiadi, and E. Amiruddin, J. Energy Storage 40, 102823 (2021).

    Google Scholar 

  49. E. Taer, Y. Susanti, A. Sugianto, R. Taslim, R.N. Setiadi, S. Bahri Agustino, P. Dewi, and B. Kurniasih, AIP Conf. Proc. 1927, 030016 (2018).

    Google Scholar 

  50. A. Jain, M. Ghosh, M. Krajewski, S. Kurungot, and M. Michalska, J. Energy Storage 34, 102178 (2021).

    Google Scholar 

  51. E. Taer, R. Taslim, and A.I.P. Conf, Proc. 1927, 020004 (2018).

    Google Scholar 

  52. E. Taer, A. Afrianda, R. Taslim, K. Minarni, A. Agustino, A. Apriwandi, and U. Malik, J. Phys. Conf. Ser. 1120, 012007 (2018).

    Google Scholar 

  53. Z. Ma, H. Liu, and Q. Lü, J. Energy Storage 40, 102773 (2021).

    Google Scholar 

  54. A. Khan, R.A. Senthil, J. Pan, S. Osman, Y. Sun, and X. Shu, Electrochim. Acta 335, 135588 (2020).

    Google Scholar 

  55. S. Sundriyal, V. Shrivastav, A. Kaur, A. Deep, and S.R. Dhakate, J. Energy Storage 41, 103000 (2021).

    Google Scholar 

  56. D. Khalafallah, X. Quan, C. Ouyang, and M. Zhi, Renew. Energy 170, 60 (2021).

    Google Scholar 

  57. O. Boujibar, A. Ghosh, O. Achak, T. Cha, and F. Ghamouss, J. Energy Storage 26, 100958 (2019).

    Google Scholar 

  58. E. Taer, K. Natalia, A. Apriwandi, R. Taslim, A. Agustino, and R. Farma, Adv. Nat. Sci. Nanosci. Nanotechnol. 11, 025007 (2020).

    Google Scholar 

  59. E. Taer, M. Deraman, R. Taslim, and A.I.P. Conf, Proc. 2013, 33 (2013).

    Google Scholar 

  60. Y. Mao, N. Siva, A. Dhar, A. Manjaly, M. Kashif, E.H. Al-ghurabi, M. Asif, M. Boumaza, Y. Duan, and R.L. Vekariya, J. Energy Storage 40, 102784 (2021).

    Google Scholar 

  61. X. Chen, R. Paul, and L. Dai, Natl. Sci. Rev. 4, 453 (2017).

    Google Scholar 

  62. E. Taer, N. Yanti, and R. Taslim, J. Mater. Res. Technol. 19, 4721 (2022).

    Google Scholar 

  63. C. Ding, T. Liu, X. Yan, L. Huang, S. Ryu, J. Lan, Y. Yu, W. Zhong, and X. Yang, Nano-Micro Lett. 12, 1 (2020).

    Google Scholar 

  64. E. Taer, A. Apriwandi, A. Agustino, M.R. Dewi, and R. Taslim, Int. J. Energy Res. 46, 1467 (2021).

    Google Scholar 

  65. Y.L.T. Liu, F. Zhang, and Y. Song, J. Mater. Chem A 5, 17705 (2017).

    Google Scholar 

  66. D. He, Y. Gao, Z. Wang, Y. Yao, L. Wu, J. Zhang, Z.-H. Huang, and M.-X. Wang, J. Colloid Interface Sci. 581, 238 (2020).

    Google Scholar 

  67. Z. Ying, Y. Zhang, X. Lin, S. Hui, Y. Wang, Y. Yang, and Y. Li, Chem. Commun. 56, 10730 (2020).

    Google Scholar 

  68. E. Taer, A. Apriwandi, R. Taslim, and A. Agutino, J. Mater. Res. Technol. 9, 13332 (2020).

    Google Scholar 

  69. P.M. Shafi, N. Joseph, A. Thirumurugan, and A.C. Bose, Chem. Eng. J. 338, 147 (2018).

    Google Scholar 

  70. M. Rafique, S. Hajra, M.Z. Iqbal, G. Nabi, S.S.A. Gillani, and M.B. Tahir, Int. J. Energy Res. 45, 4145 (2020).

    Google Scholar 

  71. C. Karaman, O. Karaman, N. Atar, and M. Lu, Phys. Chem. Chem. Phys. 23, 12807 (2021).

    Google Scholar 

  72. N. Sangtong, T. Chaisuwan, S. Wongkasemjit, H. Ishida, W. Redpradit, K. Seneesrisakul, and U. Thubsuang, Microporous Mesoporous Mater. 326, 111383 (2021).

    Google Scholar 

  73. M. Cao, Y. Feng, R. Tian, Q. Chen, J. Chen, M. Jia, and J. Yao, Carbon N. Y. 161, 224 (2020).

    Google Scholar 

  74. R. Farma, M. Deraman, R. Omar, M.M. Ishak, E. Taer, I.A. Talib, and A.I.P. Conf, Proc. 1415, 180 (2011).

    Google Scholar 

  75. C. Xia, S. Surendran, S. Ji, D. Kim, Y. Chae, J. Kim, M. Je, M. Han, W. Choe, C.H. Choi, H. Choi, J.K. Kim, and U. Sim, Carbon Energy 4, 491 (2022).

    Google Scholar 

  76. J. Wang, Y. Xu, M. Yan, B. Ren, X. Dong, J. Miao, L. Zhang, X. Zhao, and Z. Liu, Biomass Bioenerg. 156, 106301 (2022).

    Google Scholar 

  77. Z. Zhang, W. Yang, Y. Wu, G. Yan, L. Li, Y. Qing, and X. Lu, Ind. Eng. Chem. Res. 60, 11079 (2021).

    Google Scholar 

  78. H. Liu, W. Chen, R. Zhang, C. Xu, X. Huang, H. Peng, and C. Huo, Appl. Surf. Sci. 566, 150692 (2021).

    Google Scholar 

  79. M.D. Mehare, A.D. Deshmukh, and S.J. Dhoble, J. Mater. Sci. Mater. Electron. 32, 14057 (2021).

    Google Scholar 

  80. X. Liang, R. Liu, and X. Wu, Microporous Mesoporous Mater. 310, 110659 (2021).

    Google Scholar 

  81. M.M. Baig and I.H. Gul, Biomass Bioenerg. 144, 105909 (2021).

    Google Scholar 

  82. M.D. Mehare, A.D. Deshmukh, and S.J. Dhoble, J. Mater. Sci. 55, 4213 (2019).

    Google Scholar 

  83. S. Sankaranarayanan, M. Hariram, S. Vivekanandhan, and R. Navia, Energy Storage 3, e222 (2021).

    Google Scholar 

Download references

Acknowledgements

The research was financially supported by second years Project of Word Class Research (WCR) in Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi, Republic of Indonesia, with the title “High energy and power densities of supercapacitor for the optimization of electrode supply process” Contract No. 1627/UN19.5.1.3/PT.01.03/2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rika Taslim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taer, E., Syamsunar, N., Apriwandi, A. et al. Novel Solanum torvum Fruit Biomass-Derived Hierarchical Porous Carbon Nanosphere as Excellent Electrode Material for Enhanced Symmetric Supercapacitor Performance. JOM 75, 4494–4506 (2023). https://doi.org/10.1007/s11837-023-05801-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05801-x

Navigation