Skip to main content

Advertisement

Log in

Waste fruit grain orange–derived 3D hierarchically porous carbon for high-performance all-solid-state supercapacitor

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Utilizing renewable and abundant biomass waste to prepare hierarchically porous carbons (HPC) materials with large surface area and good electrical conductivity have received considerable attention recently. In this work, a novel 3D HPC was prepared by a low-cost and facile hydrothermal process, carbonization, and chemical activation from Huiyuan® fruit grain orange (FGO) with expired deadline for the first time. The obtained HPC exhibits a high specific surface area of 2149 m2 g−1 and facilitated charge transfer ability offered by its hierarchical structure. When used as electrodes for supercapacitor, HPC displays a maximum specific capacitance of 452.7 F g−1 at 1 A g−1 in 1 M H2SO4, which is one of the highest values reported for biomass-derived carbons. Remarkably, the all-solid-state symmetric supercapacitor based on HPC-4 exhibits a high energy density of 14.1 Wh kg−1 at a power density of 140 W kg−1 and outstanding cycling stability (90% capacitance retention after 6000 charge/discharge cycles at 10 A g−1). HPC-4 should be a promising electrode material for all-solid-state supercapacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang X, Xin Y, Zhang X, Wang X, Wang C (2019) Three-dimensional carboxymethyl cellulose sponge-like ultralight electrode for lithium-ion batteries. Ionics. 25:429–435. https://doi.org/10.1007/s11581-018-2835-5

    Article  CAS  Google Scholar 

  2. Xu Y, Li B, Zheng S, Wu P, Zhan J, Xue H, Xu Q, Pang H (2018) Ultrathin two-dimensional cobalt-organic framework nanosheets for high-performance electrocatalytic oxygen evolution. J Mater Chem A 6:22070–22076

    Article  CAS  Google Scholar 

  3. Yang W, Li X, Li Y, Zhu R, Pang H (2018) Applications of metal-organic-framework-derived carbon materials. Adv Mater:1804740–1804775

  4. Li Q, Zheng S, Xu Y, Xue H, Pang H (2017) Ruthenium based materials as electrode materials for supercapacitors. Chem Eng J 333:505–518

    Article  CAS  Google Scholar 

  5. Yang P, Wu Z, Jiang Y, Pan Z, Tian W, Jiang L, Hu L (2018) Fractal (NixCo1-x)9Se8 nanodendrite arrays with highly exposed (011) surface for wearable, all-solid-state supercapacitor. Adv Energy Mater 8:1801392–1801402

    Article  CAS  Google Scholar 

  6. Xu Y, Zheng S, Tang H, Guo X, Xue H, Pang H (2017) Prussian blue and its derivatives as electrode materials for electrochemical energy storage. Energy Storage Mater 9:11–30

    Article  Google Scholar 

  7. Xu J, Wang G, Cao J, Xue Y (2016) Supercapacitor performances of rich nitrogen-doped mesoporous graphene fabricated by a facile template-free copyrolysis process. Ionics. 22:1177–1184

    Article  CAS  Google Scholar 

  8. Yan Y, Gu P, Zheng S, Zheng M, Pang H, Xue H (2016) Facile synthesis of accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. J Mater Chem A 4:19078–19087

    Article  CAS  Google Scholar 

  9. Shi Y, Peng L, Ding Y, Zhao Y, Yu G (2015) Nanostructured conductive polymers for advanced energy storage. Chem Soc Rev 44:6684–6696

    Article  CAS  PubMed  Google Scholar 

  10. Jiang Y, Jiang L, Wu Z, Yang P, Zhang H, Pan Z, Hu L (2018) In situ growth of (NH4)2V10O25·8H2O urchin-like hierarchical arrays as superior electrodes for all-solid-state supercapacitors. J Mater Chem A 6:16308–16316

    Article  CAS  Google Scholar 

  11. Pan Z, Jiang Y, Yang P, Wu Z, Tian W, Liu L, Song Y, Gu Q, Sun D, Hu L (2018) In-situ growth of layered bimetallic ZnCo hydroxide nanosheets for high-performance all-solid-state pseudocapacitor. ACS Nano 12:2968–2979

    Article  CAS  PubMed  Google Scholar 

  12. Jiang Y, Song Y, Li Y, Tian W, Pan Z, Yang P, Li Y, Gu Q, Hu L (2017) Charge transfer in ultrafine LDH nanosheets/graphene interface with superior capacitive energy storage performance. ACS Appl Mater Interfaces 9:37645–37654

    Article  CAS  PubMed  Google Scholar 

  13. Wen L, Li F, Cheng H-M (2016) Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv Mater 28:4306–4337

    Article  CAS  PubMed  Google Scholar 

  14. Jiang Y, Wu Z, Jiang L, Pan Z, Yang P, Tian W, Hu L (2018) Freestanding CoSeO3·H2O nanoribbon/carbon nanotube composite paper for 2.4 V high-voltage, flexible, solid-state supercapacitors. Nanoscale 10:12003–12010

    Article  CAS  PubMed  Google Scholar 

  15. Sun J, Niu J, Liu M, Ji J, Dou M, Wang F (2018) Biomass-derived nitrogen-doped porous carbons with tailored hierarchical porosity and high specific surface area for high energy and power density supercapacitors. Appl Surf Sci 427:807–813

    Article  CAS  Google Scholar 

  16. Huang P-L, Luo X-F, Peng Y-Y, Pu N-W, Ger M-D, Yang C-H, Wu T-Y, Chang J-K (2015) Ionic liquid electrolytes with various constituent ions for graphene-based supercapacitors. Electrochim Acta 161:371–377

    Article  CAS  Google Scholar 

  17. Long C, Xiao Y, Zheng M-T, Hu H, Dong H-W, Lei B-F, Zhang H-R, Zhuang J-L, Liu Y-L (2016) Nitrogen-doped porous carbon with an ultrahigh specific surface area for superior performance supercapacitors. J Power Sources 310:145–153

    Article  CAS  Google Scholar 

  18. Feng H-B, Hu H, Dong H-W, Xiao Y, Cai Y-J, Lei B, Liu Y-L, Zheng M-T (2016) Hierarchical structured carbon derived from bagasse wastes: a simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors. J Power Sources 302:164–173

    Article  CAS  Google Scholar 

  19. Han Z-J, Bo Z, Seo D-H, Pineda S, Wang Y, Yang H-Y, Ostrikov K (2015) High pseudocapacitive performance of MnO2 nanowires on recyclable electrodes. ChemSusChem. 9:1020–1026

    Article  CAS  Google Scholar 

  20. Wang K, Zhao N, Lei S-W, Yan R, Tian X-D, Wang J-Z, Song Y, Xua D, Guo Q-G, Liu L (2015) Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochim Acta 166:1–11

    Article  CAS  Google Scholar 

  21. Tian X, Ma H, Li Z, Yan S, Ma L, Yu F, Wang G, Guo X-H, Ma Y-Q, Wong C-P (2017) Flute type micropores activated carbon from cotton stalk for high performance supercapacitors. J Power Sources 359:88–96

    Article  CAS  Google Scholar 

  22. Lu Y-H, Zhang S-L, Yin J-M, Bai C-C, Zhang J-H, Li Y-X, Yang Y, Ge Z, Zhang M, Wei L, Ma M-X, Ma Y-F, Chen Y-S (2017) Mesoporous activated carbon materials with ultrahigh mesopore volume and effective specific surface area for high performance supercapacitors. Carbon 124:64–71

    Article  CAS  Google Scholar 

  23. Xu X, Gao J, Tian Q, Zhai X, Liu Y (2017) Walnut shell derived porous carbon for a symmetric all-solid-state supercapacitor. Appl Surf Sci 411:170–176

    Article  CAS  Google Scholar 

  24. Han J, Kwon J-H, Lee J-W, Lee J-H, Roh K-C (2017) An effective approach to preparing partially graphitic activated carbon derived from structurally separated pitch pine biomass. Carbon 118:431–437

    Article  CAS  Google Scholar 

  25. Sun W, Lipka S-M, Swartz C, Williams D, Yang F (2017) Hemp-derived activated carbons for supercapacitors. Carbon 103:181–192

    Article  CAS  Google Scholar 

  26. Zhu X-Q, Yu S, Xu K, Zhang Y, Zhang L, Lou G, Wu Y, Zhu E, Chen H, Shen Z-H, Bao B, Fu S (2018) Renewable biomass derived hierarchically porous carbonaceous sponges and their magnetic nanocomposites for removal of organic molecules from water. J Ind Eng Chem 58:334–342

    Article  CAS  Google Scholar 

  27. Zhang P, Zhang Z, Chen J, Dai S (2015) Ultrahigh surface area carbon from carbonated beverages: combining self-templating process and in situ activation. Carbon 93:39–47

    Article  CAS  Google Scholar 

  28. Boyjoo Y, Cheng Y, Zhong H, Tian H, Pan J, Pareek V-K, Jiang S-P, Lamonier J-F, Jaroniec M, Liu J (2017) From waste Coca Cola® to activated carbons with impressive capabilities for CO2 adsorption and supercapacitors. Carbon 116:490–499

    Article  CAS  Google Scholar 

  29. Sevilla M, Fuertes A-B (2013) Fabrication of porous carbon monoliths with a graphitic framework. Carbon 56:155–166

    Article  CAS  Google Scholar 

  30. Wang Y, Daniel C-A, McCreery R-L (1990) Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem Mater 2:557–563

    Article  CAS  Google Scholar 

  31. Lu T, Pan L-K, Li H-B, Zhu G, Lv T, Liu X-J, Sun Z, Chen T, Chua D (2011) Microwave-assisted synthesis of graphene–ZnO nanocomposite for electrochemical supercapacitors. J Alloys Compd 509:5488–5492

    Article  CAS  Google Scholar 

  32. Liu Y, Lu T, Sun Z, Pan L-K (2015) Ultra-thin carbon nanofiber networks derived from bacterial cellulose for capacitive deionization. J Mater Chem A 3:8693–8700

    Article  CAS  Google Scholar 

  33. Gong Y, Li D, Fu Q, Pan C (2015) Influence of graphene microstructures on electrochemical performance for supercapacitors. Prog Nat Sci Mater Inter 25:379–385

    Article  CAS  Google Scholar 

  34. Xiong C-Y, Li T-H, Zhao T-H, Dang A-L, Li H, Ji X, Jin W, Jiao S, Shang Y, Zhang Y (2017) Reduced graphene oxide-carbon nanotube grown on carbon fiber as binder-free electrode for flexible high-performance fiber supercapacitors. Comp Part B: Eng 116:7–15

    Article  CAS  Google Scholar 

  35. Yu D-F, Chen C, Zhao G-Y, Sun L, Du B-S, Zhang H, Li Z, Sun Y, Besenbacher F, Yu M (2018) Biowaste-derived hierarchical porous carbon nanosheets for ultrahigh power density supercapacitors. ChemSusChem. 11:1678–1685

    Article  CAS  PubMed  Google Scholar 

  36. Gong Y, Li D, Luo C, Fu Q, Pan C (2017) Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem 19:4132–4140

    Article  CAS  Google Scholar 

  37. Yao Q, Wang H, Wang C, Jin C, Sun Q (2018) One step construction of nitrogen-carbon derived from Bradyrhizobium japonicum for supercapacitor applications with a soybean leaf as a separator. ACS Sustain Chem Eng 6:4695–4704

    Article  CAS  Google Scholar 

  38. Long C, Chen X, Jiang L, Zhi L, Fan Z (2015) Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy 12:141–151

    Article  CAS  Google Scholar 

  39. Mahto A, Gupta R, Ghara K-K, Srivastava D, Maiti P, Kalpana D, Paul Z-R, Meena R, Nataraj S-K (2017) Development of high-performance supercapacitor electrode derived from sugar industry spent wash waste. J Hazard Mater 340:189–201

    Article  CAS  PubMed  Google Scholar 

  40. Du J, Liu L, Hu Z-P, Yu Y-F, Zhang Y, Hou S-L, Chen A-B (2018) Raw-cotton-derived N-doped carbon fiber aerogel as an efficient electrode for electrochemical capacitors. ACS Sustain Chem Eng 6:4008–4015

    Article  CAS  Google Scholar 

  41. Li X, Liu K, Liu Z, Wang Z, Li B, Zhang D (2017) Hierarchical porous carbon from hazardous waste oily sludge for all-solid-state flexible supercapacitor. Electrochim Acta 240:43–52

    Article  CAS  Google Scholar 

  42. Gao F, Shao G, Qu J, Lv S, Li Y, Wu M (2015) Tailoring of porous and nitrogen-rich carbons derived from hydrochar for high-performance supercapacitor electrodes. Electrochim Acta 155:201–208

    Article  CAS  Google Scholar 

  43. Yu P, Zhang Z, Zheng L, Teng F, Hu L, Fang X (2016) A novel sustainable flour derived hierarchical nitrogen-doped porous carbon/polyaniline electrode for advanced asymmetric supercapacitors. Adv Energy Mater 6:1601111–1601121

    Article  CAS  Google Scholar 

  44. Wang C, Wu D, Wang H, Gao Z, Xu F, Jiang K (2018) Biomass derived nitrogen-doped hierarchical porous carbon sheets for supercapacitors with high performance. J Colloid Interface Sci 523:133–143

    Article  CAS  PubMed  Google Scholar 

  45. Elmouwahidi A, Bailón-García E, Pérez-Cadenas A-F, Maldonado-Hódar F-J (2017) Activated carbons from KOH and H3PO4-activation of olive residues and its application as supercapacitor electrodes. Electrochim Acta 229:219–228

    Article  CAS  Google Scholar 

  46. Shi Y-H, Zhang L-L, Schon T-B, Li H-H, Fan C-Y, Li X-Y, Wang H-F, Wu X-L, Xie H-M, Sun H-Z, Seferos D-S, Zhang J-P (2017) Biomass-derived robust three-dimensional porous carbon for high volumetric performance supercapacitors. ACS Appl Mater Interfaces 9:42699–42707

    Article  CAS  PubMed  Google Scholar 

  47. Sun L, Tian C-G, Li M-T, Meng X-Y, Wang L, Wang R-H, Yin J, Fu H-G (2013) From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J Mater Chem A 1:6462–6471

    Article  CAS  Google Scholar 

  48. Li X, Xing W, Zhuo S, Zhou J, Li F, Qiao S-Z, Lu G-Q (2011) Preparation of capacitors electrode from sunflower seed shell. Bioresour Technol 102:1118–1123

    Article  CAS  PubMed  Google Scholar 

  49. Falco C, Sieben J-M, Brun N, Sevilla M, Mauelen T, Morallon E, Cazorla-Amoros D, Titirici M-M (2013) Hydrothermal carbons from hemicellulose-derived aqueous hydrolysis products as electrode materials for supercapacitors. ChemSusChem. 6:374–382

    Article  CAS  PubMed  Google Scholar 

  50. Song S, Ma F, Wu G, Ma D, Geng W, Wan J (2015) Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J Mater Chem A 3:18154–18162

    Article  CAS  Google Scholar 

  51. Sun F, Gao J, Pi X, Wang L, Yang Y, Qu Z, Wu S-H (2017) High performance aqueous supercapacitor based on highly nitrogen-doped carbon nanospheres with unimodal mesoporosity. J Power Sources 337:189–196

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support from the National Public Welfare Special Foundation (201504502), Outstanding Youth Talents in Anhui Provincial Education Department (2017GXBJZD47), Important Project of Anhui Provincial Education Department (KJ2018A0446), and Science and technology development program project of Jilin province in 2017 (20170203001SF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junyou Shi or Ting Lu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, G., Li, Y., Zhu, G. et al. Waste fruit grain orange–derived 3D hierarchically porous carbon for high-performance all-solid-state supercapacitor. Ionics 25, 3935–3944 (2019). https://doi.org/10.1007/s11581-019-02930-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02930-9

Keywords

Navigation