Skip to main content
Log in

Effect of Grain Size Before Cold Rolling on Microstructure, Texture and Magnetic Properties of Ultra-Thin Low-Si Non-oriented Silicon Steel

  • Advanced Magnetic Materials for Energy and Other Functional Applications and Devices
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The present work aims to investigate the effects of prior grain size of hot rolled sheets after normalization on microstructure, texture evolution, recrystallization kinetics, and magnetic properties in 1.6% Si non-oriented silicon steel. With the increase of normalizing temperature, coarse grains will be produced, which directly leads to different recrystallization behaviors. The microstructure with a smaller grain size before cold rolling has a slow driving force at the early recrystallization stage, then at the later recrystallization stage, the grains have relatively fast kinetics by annexing adjacent deformed grains. By contrast, the microstructure with a larger grain size before cold rolling has a faster dynamic force in early recrystallization, and the shear band provides nucleation location and stores energy for recrystallization, while the dynamic force in the later recrystallization is relatively slow. The magnetic induction intensity increases with the increase of grain size before cold rolling, P1.5/50, P1.0/400 and P1.0/1000 decrease first and then increase. When the grain size before cold rolling is 154.8 μm, the grain size of the finished sheet is 112.6 μm, the magnetic induction intensity is 1.738 T, and the optimal iron losses for P1.5/50, P1.0/400, and P1.0/1000 were 2.311W/kg, 18.399W/kg and 78.48W/kg, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. M. Mehdi, Y. He, E.J. Hilinski, N.C. Kar, and A. Edrisy, J. Magn. Magn. Mater. 491, 165597 (2019).

    Article  Google Scholar 

  2. Y. Oda, T. Okubo, and M. Takata, JFE Tech Rep. 21, 7 (2016).

    Google Scholar 

  3. Y. Oda, M. Kohno, and A. Honda, J. Magn. Magn. Mater. 320(20), 2430 (2008).

    Article  Google Scholar 

  4. M.F. Lan, G.D. Wang, F. Fang, and X. Lu, Mater. Charact. 150, 118 (2019).

    Article  Google Scholar 

  5. A.J. Moses, Scr. Mater. 67(6), 560 (2012).

    Article  Google Scholar 

  6. M. Schulte, S. Steentjes, N. Leuning, and W. Bleck, J. Magn. Magn. Mater. 477, 372 (2019).

    Article  Google Scholar 

  7. J. Barros, L. Vandenbossche, L. Dupré, Y. Houbaert, and T. Ros-Yañez, J. Magn. Magn. Mater. 290, 1457 (2005).

    Article  Google Scholar 

  8. J.B. Lorenzo, T. Ros-Yanez, Y. Houbaert, and M. De Wulf, IEEE Trans. Magn. 40(4), 2739 (2004).

    Article  Google Scholar 

  9. Z. Li, S. Xie, G.D. Wang, and H.T. Liu, Mater. Charact. 183, 111593 (2022).

    Article  Google Scholar 

  10. Q. Ren, L. Zhang, and W. Yang, Steel Res. Int. 89(12), 1800047 (2018).

    Article  Google Scholar 

  11. Z.H. Li, S.K. Xie, G.D. Wang, and H.T. Liu, J. Alloys Compd. 888, 161576 (2021).

    Article  Google Scholar 

  12. J.T. Park and J.A. Szpunar, J. Magn. Magn. Mater. 321(13), 1928 (2009).

    Article  Google Scholar 

  13. L.Z. An, Y. Wang, H.Y. Song, G.D. Wang, and H.T. Liu, J. Magn. Magn. Mater. 491, 165636 (2019).

    Article  Google Scholar 

  14. W. Jiang, X. Wu, P. Yang, and X. Gu, Mater. Charact. 182, 111534 (2021).

    Article  Google Scholar 

  15. Y.B. Xu, Y.X. Zhang, Y. Wang, C.G. Li, G.M. Cao, and Z.Y. Liu, Scr. Mater. 87, 17 (2014).

    Article  Google Scholar 

  16. M. Mehdi, Y. He, E.J. Hilinski, L.A.I. Kestens, and A. Edrisy, Acta Mater. 185, 540 (2020).

    Article  Google Scholar 

  17. S.S.F. De Dafe, S. da Costa Paolinelli, and A.B. Cota, J. Magn. Magn. Mater. 323(24), 3234 (2011).

    Article  Google Scholar 

  18. E.J. Gutiérrez-Castañeda and A. Salinas-Rodríguez, J. Magn. Magn. Mater. 323(20), 2524 (2011).

    Article  Google Scholar 

  19. K.M. Lee, M.Y. Huh, H.J. Lee, J.T. Park, and J.S. Kim, J. Magn. Magn. Mater. 396, 53 (2015).

    Article  Google Scholar 

  20. J.Y. Choi, J.T. Park, B.K. Bae, and J.K. Kim, Mater. Sci. Forum. 558, 701 (2007).

    Google Scholar 

  21. J.S.M. Pedrosa, S. da Costa Paolinelli, and A.B. Cota, J. Magn. Magn. Mater. 393, 146 (2015).

    Article  Google Scholar 

  22. H. Xu, Y. Xu, Y. He, H. Jiao, S. Yue, and J. Li, J. Alloys Compd. 861, 158550 (2021).

    Article  Google Scholar 

  23. A. Samet-Meziou, A.L. Helbert-Etter, and T. Baudin, Mater. Sci. Eng. A 528(10–11), 3829 (2011).

    Article  Google Scholar 

  24. J.T. Park and J.A. Szpunar, Acta Mater. 51(11), 3037 (2003).

    Article  Google Scholar 

  25. Y.H. Sha, C. Sun, F. Zhang, D. Patel, X. Chen, and S.R. Kalidindi, Acta Mater. 76, 106 (2014).

    Article  Google Scholar 

  26. J. Schneider, G. Li, A. Franke, and B. Zhou, J. Magn. Magn. Mater. 424, 26 (2017).

    Article  Google Scholar 

  27. H. Jiao, Y. Xu, W. Xiong, Y. Zhang, G. Cao, C. Li, and J. Niu, Mater. Des. 136, 23 (2017).

    Article  Google Scholar 

  28. K. Barmak, Metall. Mater. Trans. B 49(6), 3616 (2018).

    Article  Google Scholar 

  29. M. Avrami, J. Chem. Phys. 9(2), 177 (1941).

    Article  Google Scholar 

  30. A. Belyakov, Y. Kimura, and K. Tsuzaki, Mater. Sci. Eng. A. 403(1–2), 249 (2005).

    Article  Google Scholar 

  31. Z. Liu, R.O. Olivares, Y. Lei, C.I. Garcia, and G. Wang, J. Alloys Compd. 679, 293 (2016).

    Article  Google Scholar 

  32. H. Luo, J. Sietsma, and S. van der Zwaag, Mater. Sci. Forum. 467, 293 (2004).

    Article  Google Scholar 

  33. M. Oyarzabal, A. Martínez-de-Guerenu, and I. Gutierrez, Mater. Sci. Eng. A. 485(1–2), 200 (2008).

    Article  Google Scholar 

  34. H.T. Liu, Y.P. Wang, L.Z. An, Z.J. Wang, and D.Y. Hou, J. Magn. Magn. Mater. 420, 192 (2016).

    Article  Google Scholar 

  35. H.G. Kang, K.M. Lee, M.Y. Huh, J.S. Kim, and J.T. Park, J. Magn. Magn. Mater. 323(17), 2248 (2011).

    Article  Google Scholar 

  36. G. Bertotti, F. Fiorillo, G.P. Soardo, and J. de Le, Phys. Col. 49(C8), 1915 (1988).

    Google Scholar 

  37. Y.X. Zhang, M.F. Lan, Y. Wang, F. Fang, and X. Lu, Mater. Charact. 150, 118 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Major Project of Shanxi Province (20191102004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Xia Wang or Chun-Xiang Xu.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SJ., Li, M., Wang, HX. et al. Effect of Grain Size Before Cold Rolling on Microstructure, Texture and Magnetic Properties of Ultra-Thin Low-Si Non-oriented Silicon Steel. JOM 75, 1824–1838 (2023). https://doi.org/10.1007/s11837-023-05781-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05781-y

Navigation