Skip to main content
Log in

Temperature Dependence of the Tensile Strength of Select Coolant Materials for Generation-IV Nuclear Reactors: Sodium, Lead and Bismuth

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The tensile strengths of liquid sodium, lead and bismuth, possible coolant materials for generation-IV nuclear reactors, at 0 K (i.e., ideal tensile strength), 293 K, normal melting point and normal boiling point are determined based on generalized van der Waals equations of state. The parameters of the generalized van der Waals equations of state have been determined though the vapor–liquid critical-point parameters. The tensile strengths of liquid sodium, lead and bismuth at 0 K are found to be about 2.65 GPa, 4.67 GPa and 4.33 GPa, respectively. The tensile strengths of liquid sodium, lead and bismuth at 293 K are found to be about 1.33 GPa, 2.98 GPa and 2.62 GPa, respectively. The tensile strengths of liquid sodium, lead and bismuth at normal melting point are found to be about 1.20 GPa, 2.34 GPa and 2.36 GPa, respectively. The tensile strengths of liquid sodium, lead and bismuth at normal boiling point are found to be about 0.43 GPa, 0.90 GPa and 0.62 GPa, respectively. The tensile strengths of liquid lead at 0 K and 293 K, obtained in this work, satisfactorily agree with the literature data. Moreover, spinodal-pressure correlations for sodium, lead and bismuth have been formulated. These correlations are characterized by the correlation coefficient of about 0.9999 and the coefficient of determination of about 0.9999.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Department of Energy–DOE, A Technology Roadmap for Generation IV Nuclear Energy Systems, Technical Report GIF-002–00, USDOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum: USA, Washington (2002), https://doi.org/10.2172/859029.

  2. M. Takahashi, S. Uchida, Y. Yamada, and K. Koyama, Prog. Nuc. Energ. https://doi.org/10.1016/j.pnucene.2007.11.082 (2008).

    Article  Google Scholar 

  3. J.-Y. Lim and M.-H. Kim, Prog. Nuc. Energ. https://doi.org/10.1016/j.pnucene.2006.12.004 (2007).

    Article  Google Scholar 

  4. B. Yoo, Y-I. Kim, and Y-J. Kim, Transactions of the Korean Nuclear Society Spring Meeting Chuncheon, Korea, May 25–26 (2006).

  5. Y. Tian, W. Tian, D. Zhang, G. Su, and S. Qiu, Proceeding series: Inter. Confer. Nuc. Eng. (ICONE22–30318). (2014). https://doi.org/10.1115/ICONE22-30318.

  6. V. Sobolev, J. Nuc. Mat. https://doi.org/10.1016/j.jnucmat.2007.01.144 (2007).

    Article  Google Scholar 

  7. G.P. Bogoslovskaya. P.L. Kirillov, J. Kupiz, G. Heusener, Y. Nishi, A. Rineikii, A. Stangulesku, D. Wade, and V.V. Yarovitsin, IAEA TECDOC9 1289, Vienna. (2002). Available at: https://www-pub.iaea.org/MTCD/Publications/PDF/te_1289_prn.pdf

  8. I.A. Chusov, V.G. Pronyayev, G.Y. Novikov, and N.A. Obysov, Nuc. Ener. Technol. https://doi.org/10.3897/nucet.6.55232 (2020).

    Article  Google Scholar 

  9. I.A. Chusov, V.G. Pronyayev, G.Y. Novikov, and N.A. Obysov, Izvestiya vuzov. Yadernaya Energetika. (2020). https://doi.org/10.26583/npe.2020.1.11, Available at: https://nuclear-power-engineering.ru/en/article/2020/01/11/.

  10. L.P. Kirillov, Thermophysical Properties of Materials for Nuclear Engineering: A Tutorial and Collection of Data, IAEA, Vienna. Available at: https://www-pub.iaea.org/mtcd/publications/pdf/iaea-thph_web.pdf. (2008).

  11. V. Sobolev, Database of Thermophysical Properties of Liquid Metal Coolants for GEN-IV. Sodium, Lead, Lead-Bismuth Eutectic, Scientific Report of the Belgian Nuclear Research Centre, SCK•CEN-BLG-1069, November 2010 (rev. Dec. 2011).

  12. P. Sabharwall, E.S. Kim, M. McKellar, and N. Anderson, INL/EXT-11–21584 TRN: US1200189, USA: National Park. (2011). https://doi.org/10.2172/1031671.

  13. M. Jeltsov, W. Villanueva, and P. Kudinov, Nuc. Eng. Design. https://doi.org/10.1016/j.nucengdes.2018.01.006 (2018).

    Article  Google Scholar 

  14. C. Wang, S. Wei, W. Tian, S. Qiu, and G.H. Su, Annals Nuc. Energ. https://doi.org/10.1016/j.anucene.2019.06.019 (2019).

    Article  Google Scholar 

  15. V.P. Skripov, Phys. Today. https://doi.org/10.1063/1.3069013 (1975).

    Article  Google Scholar 

  16. L.P. Filippov, Estimation of Thermophysical Properties of Liquids and Gases (Energoatomizdat, Moscow, 1988), p55.

    Google Scholar 

  17. F. Hensel and H. Uchtmaan, Annu. Rev. Phys. Chem. https://doi.org/10.1146/annurev.pc.40.100189.000425 (1989).

    Article  Google Scholar 

  18. P.A. Tamanga, D. Lissouck, F. Lontisi, and M. Tchoffo, African. J. Sci. Technol. https://doi.org/10.4314/ajst.v5i2.15337 (2004).

    Article  Google Scholar 

  19. R. Balasubramanian, Open J. Chem. Eng. Sci. https://doi.org/10.1002/apj.107 (2014).

    Article  Google Scholar 

  20. M.M. Martynyuk, Zh. Fiz. Khim. 65, 1716 (1991).

    Google Scholar 

  21. M.M. Martynyuk and R. Balasubramanian, Int. J. Thermophys. https://doi.org/10.1007/BF01441919 (1995).

    Article  Google Scholar 

  22. V.K. Semenchenko, Selected Topics of Theoretical Physics. (Prosveshchenie, Moscow: Russian, 1966), p. 394.

  23. R. Balasubramanian, Int. J. Thermophys. https://doi.org/10.1007/s10765-006-0098-2 (2006).

    Article  Google Scholar 

  24. J.W. Herman and H.E. Elsayed-Ali, Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.69.1228 (1992).

    Article  Google Scholar 

  25. V. Talanquer, J. Chem. Edu. https://doi.org/10.1021/ed079p877 (2002).

    Article  Google Scholar 

  26. S. Balibar and F. Caupin, J. Phys.: Cond. Matt. https://doi.org/10.1088/0953-8984/15/1/308 (2002).

    Article  Google Scholar 

  27. R.P. Lungu, R. Sartorio, and G. Mangiapia, Romanian Report. Phys., Available at: https://rjp.nipne.ro/2015_60_9-10/RomJPhys.60.p1462.pdf, (2015).

  28. R. Balasubramanian and C. Arul, Int. J. Sci. Res. https://doi.org/10.21275/ART20164684 (2017).

    Article  Google Scholar 

  29. R.E. Apfel, Nat. Phys. Sci. https://doi.org/10.1038/physci238063a0 (1972).

    Article  Google Scholar 

  30. M.S. Plesset, Tensile strength of liquids, Report No. 85–47, Division of Engineering and Applied Science California Institute of Technology Pasadena, California. (1969). Available at: https://authors.library.caltech.edu/46061/1/Report%20No.85-47.pdf.

  31. L.A. Crum, Nature. https://doi.org/10.1038/278148a0 (1979).

    Article  Google Scholar 

  32. M.M. Martynyuk, J. Eng. Phys. Thermophys. https://doi.org/10.1007/BF02699274 (1999).

    Article  Google Scholar 

  33. N.H. Macmillan and A. Kelly, J. Mat. Sci. https://doi.org/10.1007/BF02403513 (1972).

    Article  Google Scholar 

  34. A. Nie, Y. Bu, P. Li, Y. Zhang, T. Jin, J. Lin, Z. Su, Y. Wang, J. He, Z. Liu, H. Wang, Y. Tain, and W. Yang, Nat. Comm. https://doi.org/10.1038/s41467-019-13378-w (2019).

    Article  Google Scholar 

  35. V.I. Nedostup, High Temp. https://doi.org/10.1134/s0018151X13010112 (2013).

    Article  Google Scholar 

  36. A.R. Imre, A. Groniewsky, and G. Györke, Inter. Phenomena Heat Transfer. https://doi.org/10.1615/InterfacPhenomHeatTransfer.2018025457 (2017).

    Article  Google Scholar 

  37. V.L. Malyshev, D.F. Marin, E.F. Moiseeva, N.A. Gumerov, and ISh. Akhatov, High Temp. https://doi.org/10.1134/S0018151X15020145 (2015).

    Article  Google Scholar 

  38. H.Y. Kwak and R.L. Panton, J. Phys. D. https://doi.org/10.1088/0022-3727/18/4/009 (1985).

    Article  Google Scholar 

  39. H.Y. Kwak, KSME Int. J. https://doi.org/10.1007/BF02984241 (2004).

    Article  Google Scholar 

  40. S.W. Benson and E. Gerjuoy, J. Chem. Phys. https://doi.org/10.1063/1.1747086 (1949).

    Article  Google Scholar 

  41. V. Sobolev, Compr. Nucl. Mater. https://doi.org/10.1016/B978-0-08-056033-5.00130-0 (2012).

    Article  Google Scholar 

  42. V. Sobolev and P. Schuurmans, Compr. Nucl. Mater. https://doi.org/10.1016/B978-0-12-803581-8.00682-2 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work did not receive any grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Balasubramanian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, A., Balasubramanian, R. Temperature Dependence of the Tensile Strength of Select Coolant Materials for Generation-IV Nuclear Reactors: Sodium, Lead and Bismuth. JOM 75, 1721–1730 (2023). https://doi.org/10.1007/s11837-023-05772-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05772-z

Navigation