Skip to main content
Log in

Phyto-Synthesis and Characterization of Parthenium-Mediated Iron Oxide Nanoparticles and an Evaluation of Their Antifungal and Antioxidant Activities and Effect on Seed Germination

  • Composite Materials for Sustainable and Eco-Friendly Material Development and Application
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The present research provides a safe method for synthesizing iron oxide nanoparticles using leaf extract of Parthenium hysterophorus. The novelty of the present study is the utilization of P. hysterophorus biomass as a reducing, capping, and stabilizing agent for the production of iron oxide nanoparticles with antifungal and antioxidant potential. The size, shape, crystalline nature, stability, functional groups, and purity of as-synthesized nanoparticles were analysed. Spherically shaped, with an average size of 17.5 nm, highly stable and crystalline Parthenium-mediated iron oxide nanoparticles were produced. In addition, the antifungal activity was screened against fungal pathogens (Aspergillus niger and A. flavus) using well diffusion method. The growth of both funguses was inhibited by iron oxide nanoparticles. The antioxidant activity was performed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. A higher concentration of iron oxide nanoparticles showed higher free radical scavenging activity compared to ascorbic acid. The IC50 value was 184.3 µg/ml. The seed germination assay was performed using Sesamum indicum and Arachis hypogaea. A lower concentration of Parthenium-mediated iron oxide nanoparticles, rather than higher ones, triggered the germination level. Parthenium-mediated iron oxide nanoparticles may be used as nano-fungicide in biomedical and agricultural fields to improve human health and agriculture productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.L. Carrillo-Inungaray, J.A.Trejo-Ramirez, A. Reyes-Munguiaand Carranza-Alvarez. Impact of nanoscience in the food industry, ed. A. M.Grumezescu and A. M. Holban (Elsevier, United Kingdom, 2018) p. 419.

  2. R.K. Yadav, N.B. Singh, A. Singh, V. Yadav, C. Bano, and S. Khare, Vegetos 33, 203 (2020).

    Article  Google Scholar 

  3. P.D. Cozzoli, T. Pellegrino, and L. Manna, Chem. Soc. Rev. 35, 1195 (2006).

    Article  Google Scholar 

  4. B. Du, X. Jiang, A. Das, Q. Zhou, M. Yu, R. Jin, and J. Zheng, Nat. Nanotechnol. 12, 1096 (2017).

    Article  Google Scholar 

  5. S. Patil, and R. Chandrasekaran, J. Genet. Eng. Biotechnol. 18, 1 (2020).

    Article  Google Scholar 

  6. S. Ko, and C. Huh, J. Pet. Sci. Eng. 172, 97 (2019).

    Article  Google Scholar 

  7. A. Gour, and N.K. Jain, Artif. Cells Nanomed. Biotechnol. 47, 844 (2019).

    Article  Google Scholar 

  8. J.B. Zimmerman, P.T. Anastas, H.C. Erythropel, and W. Leitner, Science 367, 397 (2020).

    Article  Google Scholar 

  9. Z. Cai, A.D. Dwivedi, W.N. Lee, X. Zhao, W. Liu, M. Sillanpää, D. Zhao, C.H. Huang, and J. Fu, Environ. Sci. Nano. 5, 27 (2018).

    Article  Google Scholar 

  10. S. Pradhan, A.J. Borah, M.K. Poddar, P.K. Dikshit, L. Rohidas, and V.S. Moholkar, Bioresour. Technol. 242, 304 (2017).

    Article  Google Scholar 

  11. S. Mene, Int. J. Life Sci. 5, 12 (2015).

    Google Scholar 

  12. M. Sivakumar, S. Surendar, M. Jayakumar, P. Seedevi, P. Sivasankar, M. Ravikumar, M. Anbazhagan, T. Murugan, S.S. Siddiqui, and S. Loganathan, J. Clust. Sci. 32, 167 (2021).

    Article  Google Scholar 

  13. A.J. Adur, N. Nandini, K.S. Mayachar, R. Ramya, and N. Srinatha, J. Photochem. Photobiol. B Biol. 183, 30 (2018).

    Article  Google Scholar 

  14. K. Thandapani, M. Kathiravan, E. Namasivayam, I.A. Padiksan, G. Natesan, M. Tiwari, B. Giovanni, and V. Perumal, Environ. Sci. Pollut. Res. 25, 10328 (2018).

    Article  Google Scholar 

  15. V. Parashar, R. Parashar, B. Sharma, and A.C. Pandey, Dig. J. Nanomater. Biostruct. 4, 79 (2009).

    Google Scholar 

  16. P. Rajiv, S. Rajeshwari, and R. Venckatesh, Spectrochim. Acta A Mol. Biomol. Spectrosc. 112, 384 (2013).

    Article  Google Scholar 

  17. Y. Hou, Z. Xu, and S. Sun, Angew. Chem. Int. Ed. 119, 6445 (2007).

    Article  Google Scholar 

  18. S. Natarajan, K. Harini, G.P. Gajula, B. Sarmento, M.T. Neves-Petersen, and V. Thiagarajan, BMC Mater. 1, 1 (2019).

    Article  Google Scholar 

  19. S.O. Aisida, P.A. Akpa, I. Ahmad, T.K. Zhao, M. Maaza, and F.I. Ezema, Eur. Polym. J. 122, 109371 (2020).

    Article  Google Scholar 

  20. M. Yusefi, K. Shameli, R.R. Ali, S.W. Pang, and S.Y. Teow, J. Mol. Struct. 1204 (2020).

  21. M. Jamzad, and M.K. Bidkorpeh, J. Nanostruct. Chem. 10, 193 (2020).

    Article  Google Scholar 

  22. D.A. Demirezen, Y.S. Yıldız, S. Yılmaz, and D.D. Yılmaz, J. Biosci. Bioeng. 127, 241 (2019).

    Article  Google Scholar 

  23. P. Karpagavinayagam, and C. Vedhi, Vacuum 160, 286 (2019).

    Article  Google Scholar 

  24. V.A. Niraimathee, V. Subha, R.E. Ravindran, and S. Renganathan, Int. J. Environ. Sustain. Dev. 15, 227 (2016).

    Article  Google Scholar 

  25. M. Sivakami, R. Renuka, and T. Thilagavathi, J. Environ. Chem. Eng. 8, 104420 (2020).

    Article  Google Scholar 

  26. I. Bibi, N. Nazar, S. Ata, M. Sultan, A. Ali, A. Abbas, K. Jilani, S. Kamal, F.M. Sarim, M.I. Khan, and F. Jalal, J. Mater. Res. Technol. 8, 6115 (2019).

    Article  Google Scholar 

  27. H. Muthukumar, and M. Matheswaran, ACS Sustain. Chem. Eng. 3, 3149 (2015).

    Article  Google Scholar 

  28. A.W.M. Mahmoud, S.M. Abdelaziz, M.M. El-Mogy and E.A. Abdeldaym. Agriculture/Pol'nohospodárstvo 65, (2019).

  29. M. Harshiny, N. Samsudeen, R.J. Kameswara, and M. Matheswaran, Int. J. Hydrog. Energy 42, 26488 (2017).

    Article  Google Scholar 

  30. S.R. Lakhotia, M. Mukhopadhyay, and P. Kumari, Sep. Purif. Technol. 211, 98 (2019).

    Article  Google Scholar 

  31. P. Rajiv, B. Bavadharani, M.N. Kumar, and P. Vanathi, Biocatal. Agric Biotechnol. 12, 45 (2017).

    Article  Google Scholar 

  32. M. Sankareswaran, M. Vanitha, R. Periakaruppan and A. Anbukumaran. Silicon, p.1 (2022).

  33. R. Periakaruppan, X. Chen, K. Thangaraj, A. Jeyaraj, H.H. Nguyen, Y. Yu, S. Hu, L. Lu, and X. Li, J. Clean. Prod. 278, 123962 (2021).

    Article  Google Scholar 

  34. G. Jagathesan, and P. Rajiv, Biocatal. Agric. Biotechnol. 13, 90 (2018).

    Article  Google Scholar 

  35. S. Magaldi, S. Mata-Essayag, C.H. De Capriles, C. Pérez, M.T. Colella, C. Olaizola, and Y. Ontiveros, Int. J. Infect. Dis. 8, 39 (2004).

    Article  Google Scholar 

  36. S. Narendhran, P. Rajiv, and R. Sivaraj, Bull. Mater. Sci. 39, 415 (2016).

    Article  Google Scholar 

  37. N.M. Shamhari, B.S. Wee, S.F. Chin, and K.Y. Kok, Acta Chim. Slov. 65, 578 (2018).

    Article  Google Scholar 

  38. S.S. Behera, J.K. Patra, K. Pramanik, N. Panda, and H. Thatoi, World J. Nano Sci. Eng. 196, 79 (2012).

    Google Scholar 

  39. B. Bajaj, B.D. Malhotra, and S. Choi, Thin Solid Films 519, 1219 (2010).

    Article  Google Scholar 

  40. V. Srivastava, D. Gusain, and Y.C. Sharma, Ceram. Int. 39, 9803 (2013).

    Article  Google Scholar 

  41. A. Bouafia, and S.E. Laouini, Mater. Lett. 265, 127364 (2020).

    Article  Google Scholar 

  42. N. Madubuonu, S.O. Aisida, I. Ahmad, S. Botha, T.K. Zhao, M. Maaza, and F.I. Ezema, Appl. Phys. A 126, 1 (2020).

    Article  Google Scholar 

  43. D. Bharathi, S. Preethi, K. Abarna, M. Nithyasri, P. Kishore, and K. Deepika, Biocatal. Agric. Biotechnol. 27, 101698 (2020).

    Article  Google Scholar 

  44. W. Muzafar, T. Kanwal, K. Rehman, S. Perveen, T. Jabri, F. Qamar, S. Faizi, and M.R. Shah, J. Mol. Struct. 1269, 133824 (2022).

    Article  Google Scholar 

  45. S.F. Shi, J.F. Jia, X.K. Guo, Y.P. Zhao, D.S. Chen, Y.Y. Guo, T. Cheng, and X.L. Zhang, Int. J. Nanomed. 7, 5593 (2012).

    Google Scholar 

  46. S. Lakshminarayanan, M.F. Shereen, K.L. Niraimathi, P. Brindha, and A. Arumugam, Sci. Rep. 11, 1 (2021).

    Article  Google Scholar 

  47. M. Khatami, H.Q. Alijani, B. Fakheri, M.M. Mobasseri, M. Heydarpour, Z.K. Farahani, and A.U. Khan, J. Clean. Prod. 208, 1171 (2019).

    Article  Google Scholar 

  48. B. Kumar, K. Smita, S. Galeas, V. Sharma, V.H. Guerrero, A. Debut, and L. Cumbal, Inorg. Chem. Commun. 119, 108116 (2020).

    Article  Google Scholar 

  49. P.N.V.K. Pallela, S. Ummey, L.K. Ruddaraju, S. Gadi, C.S. Cherukuri, S. Barla, and S.V.N. Pammi, Heliyon 5, e02765 (2019).

    Article  Google Scholar 

  50. M.S.H. Bhuiyan, M.Y. Miah, S.C. Paul, T.D. Aka, O. Saha, M.M. Rahaman, M.J.I. Sharif, O. Habiba, and M. Ashaduzzaman, Heliyon 6, e04603 (2020).

    Article  Google Scholar 

  51. Y. Xie, Y. He, P.L. Irwin, T. Jin, and X. Shi, Appl. Environ. Microbiol. 77, 2325 (2011).

    Article  Google Scholar 

  52. Y.J. Liu, L.L. He, A. Mustapha, H. Li, Z.Q. Hu, and M.S. Lin, J. Appl. Microbiol. 107, 1193 (2009).

    Article  Google Scholar 

  53. S. Parveen, A.H. Wani, M.A. Shah, H.S. Devi, M.Y. Bhat, and J.A. Koka, Microb. Pathog. 115, 287 (2018).

    Article  Google Scholar 

  54. J.A.A. Abdullah, L.S. Eddine, B. Abderrhmane, M. Alonso-González, A. Guerrero, and A. Romero, Sustain. Chem. Pharm. 17, 100280 (2020).

    Article  Google Scholar 

  55. G. Karunakaran, M. Jagathambal, N. Van Minh, E. Kolesnikov, A. Gusev, O.V. Zakharova, E.V. Scripnikova, E.D. Vishnyakova, and D. Kuznetsov, Int. J. Biotechnol. Bioeng. 11, 289 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R.P. and T.S.K. wrote the main manuscript. P.V. and G.R.L.A prepared figures. N.A. and S.D. reviewed the manuscript.

Corresponding authors

Correspondence to Rajiv Periakaruppan or Sugapriya Dhanasekaran.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Periakaruppan, R., Kumar, T.S., Vanathi, P. et al. Phyto-Synthesis and Characterization of Parthenium-Mediated Iron Oxide Nanoparticles and an Evaluation of Their Antifungal and Antioxidant Activities and Effect on Seed Germination. JOM 75, 5235–5242 (2023). https://doi.org/10.1007/s11837-023-05760-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05760-3

Navigation