Skip to main content

Advertisement

Log in

Low-Temperature Oxidation Kinetics of Polymer-Embedded ECD Copper

  • Advanced Technology for Electronic Packaging and Interconnection Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Low-temperature copper oxidation results obtained on a photosensitive polymer-based redistribution layer process are presented. Focused ion beam cross-sections were performed on 2.5-µm-thick copper lines embedded in polymer to monitor the growth kinetics of Cu2O in air for the temperature range 100–200\(^\circ \)C. Below a transition temperature of 143 ± 7\(^\circ \)C, the oxide growth follows a cubic rate law with an activation energy of 0.71 ± 0.06 eV. At higher temperatures, the oxidation process is diffusion controlled and its kinetics follows a parabolic rate law with an activation energy of 0.36 ± 0.03 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data and source codes that supports the findings of this study are available within the article and in Figshare (https://doi.org/10.6084/m9.figshare.21821730.v1).

References

  1. M.H. van der Veen, N. Jourdan, V.V. Gonzalez, C.J. Wilson, N. Heylen, O.V. Pedreira, H. Struyf, K. Croes, J. Bömmels, and Z. Tokei, Barrier/liner stacks for scaling the Cu interconnect metallization, in International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC), San Jose, 23–26 May (2016).

  2. N.A. Lanzillo, K. Motoyama, H. Huang, R.R. Robison, and T. Spooner, Appl. Phys. Lett. 116, 164103 (2020).

    Article  Google Scholar 

  3. W.W. Flack, R. Hsieh, H.-A. Nguyen, J. Slabbekoorn, S. Suhard, A. Miller, A. Hiro, and R. Ridremont, One micron damascene redistribution for fan-out wafer level packaging using a photosensitive dielectric material, in Electronics Packaging Technology Conference (EPTC), Singapore, 04–07 December (2018).

  4. M. O’Reilly, X. Jiang, J.T. Beechinor, S. Lynch, C. NíDheasuna, J.C. Patterson, and G.M. Crean, Appl. Surf. Sci. 91, 152 (1995).

    Article  Google Scholar 

  5. C. Zhong, Y.-M. Jiang, D.-M. Sun, J. Gong, B. Deng, S. Cao, and J. Li, Chin. J. Phys. 47, 253 (2009).

    Google Scholar 

  6. S. Choudhary, J.V.N. Sarma, S. Pande, S. Ababou-Girard, P. Turban, B. Lepine, and S. Gangopadhyay, AIP Adv. 8, 055114 (2018).

    Article  Google Scholar 

  7. N. Cabrera and N.F. Mott, Rep. Prog. Phys. 12, 163 (1949).

    Article  Google Scholar 

  8. J.C. Yang, B. Kolasa, J.M. Gibson, and M. Yeadon, Appl. Phys. Lett. 73, 2841 (1998).

    Article  Google Scholar 

  9. Y.S. Chu, I.K. Robinson, and A.A. Gewirth, J. Chem. Phys. 110, 5952 (1999).

    Article  Google Scholar 

  10. H. Lee and J. Yu, J. Electron. Mater. 37, 1102 (2008).

    Article  Google Scholar 

  11. M. Ronay and P. Nordlander, Phys. Rev. B 35, 9403 (1987).

    Article  Google Scholar 

  12. S. Suzuki, Y. Ishikawa, M. Isshiki, and Y. Waseda, Mater. Trans. JIM 38, 1004 (1997).

    Article  Google Scholar 

  13. E. Chery, J. Slabbekoorn, N. Pinho, A. Miller, and E. Beyne, Advances in photosensitive polymer based damascene RDL processes: toward submicrometer pitches with more metal layers, in Electronic Components and Technology Conference (ECTC), San Diego, 01 June–04 July (2021).

  14. E. Chery, F.F.C. Duval, M. Stucchi, J. Slabbekoorn, K. Croes, and E. Beyne, Photosensitive polymer reliability for fine pitch RDL applications, in Electronic Components and Technology Conference (ECTC), Orlando, 03–30 June (2020).

  15. W.E. Campbell and U.B. Thomas, Trans. Electrochem. Soc. 91, 623 (1947).

    Article  Google Scholar 

  16. K. Hauffe, The mechanism of oxidation of metals-theory, in Oxidation of Metals. ed. by K. Hauffe (Plenum Press, New York, 1965), pp. 79–143.

    Chapter  Google Scholar 

  17. F.P. Fehlner and N.F. Mott, Oxid. Met. 2, 59 (1970).

    Article  Google Scholar 

  18. K.R. Lawless, Rep. Prog. Phys. 37, 231 (1974).

    Article  Google Scholar 

  19. F.P. Fehlner, J. Electrochem. Soc. 131, 1645 (1984).

    Article  Google Scholar 

  20. A. Atkinson, Rev. Mod. Phys. 57, 437 (1985).

    Article  Google Scholar 

  21. K. Mimura, J.-W. Lim, M. Isshiki, Y. Zhu, and Q. Jiang, Metall. Mater. Trans. A 37, 1231 (2006).

    Article  Google Scholar 

  22. C. Gattinoni and A. Michaelides, Surf. Sci. Rep. 70, 424 (2015).

    Article  Google Scholar 

  23. J. Li, J.W. Mayer, and E.G. Colgan, J. Appl. Phys. 70, 2820 (1991).

    Article  Google Scholar 

  24. M. Rauh, H.-U. Finzel, and P. Wißmann, Z. Naturforsch. A: Phys. Sci. 54, 937–941 (1999).

    Article  Google Scholar 

  25. H. Derin and K. Kantarli, Appl. Phys. A 75, 391 (2002).

    Article  Google Scholar 

  26. A. Njeh, T. Wieder, and H. Fuess, Surf. Interface Anal. 33, 626 (2002).

    Article  Google Scholar 

  27. G.K.P. Ramanandan, G. Ramakrishnan, and P.C.M. Planken, J. Appl. Phys. 111, 123517 (2012).

    Article  Google Scholar 

  28. L.D.L.S. Valladares, D.H. Salinas, A.B. Dominguez, D.A. Najarro, S. Khondaker, T. Mitrelias, C. Barnes, J.A. Aguiar, and Y. Majima, Thin Solid Films 520, 6368 (2012).

    Article  Google Scholar 

  29. K. Fujita, D. Ando, M. Uchikoshi, K. Mimura, and M. Isshiki, Appl. Surf. Sci. 276, 347 (2013).

    Article  Google Scholar 

  30. Y. Unutulmazsoy, C. Cancellieri, M. Chiodi, S. Siol, L. Lin, and L.P.H. Jeurgens, J. Appl. Phys. 127, 065101 (2020).

    Article  Google Scholar 

  31. J. Aromaa, M. Kekkonen, M. Mousapour, A. Jokilaakso, and M. Lundström, Corros. Mater. Degrad. 2, 625 (2021).

    Article  Google Scholar 

  32. T.N. Rhodin, J. Am. Chem. Soc. 72, 5102 (1950).

    Article  Google Scholar 

  33. W. Gao, H. Gong, J. He, A. Thomas, L. Chan, and S. Li, Mater. Lett. 51, 78 (2001).

    Article  Google Scholar 

  34. Y.Z. Hu, R. Sharangpani, and S.-P. Tay, J. Vac. Sci. Technol. A 18, 2527 (2000).

    Article  Google Scholar 

  35. C. Zhong, Y. Jiang, Y. Luo, B. Deng, L. Zhang, and J. Li, Appl. Phys. A 90, 263 (2008).

    Article  Google Scholar 

  36. S.-K. Lee, H.-C. Hsu, W.-H. Tuan, S.-K. Lee, H.-C. Hsu, and W.-H. Tuan, Mater. Res. (Sao Carlos, Braz.) 19, 51 (2016).

    Article  Google Scholar 

  37. V. Figueiredo, E. Elangovan, G. Gonçalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, Appl. Surf. Sci. 254, 3949 (2008).

    Article  Google Scholar 

  38. W.J. Moore and B. Selikson, J. Chem. Phys. 19, 1539 (1951).

    Article  Google Scholar 

  39. W.J. Tomlinson and J. Yates, J. Phys. Chem. Solids 38, 1205 (1977).

    Article  Google Scholar 

  40. A. Kuper, H. Letaw, L. Slifkin, E. Sonder, and C.T. Tomizuka, Phys. Rev. 96, 1224 (1954).

    Article  Google Scholar 

  41. K. Maier, Phys. Status Solidi A 44, 567 (1977).

    Article  Google Scholar 

  42. S. Arrhenius, Z. Phys. Chem. 4, 226 (1889).

    Article  Google Scholar 

  43. H. Dembinski, P. Ongmongkolkul and the iminuit team, scikit-hep/iminuit (2020).

  44. Y. Zhu, K. Mimura, and M. Isshiki, Mater. Trans. 43, 2173 (2002).

    Article  Google Scholar 

  45. Y. Zhu, K. Mimura, and M. Isshiki, Oxid. Met. 62, 207 (2004).

    Article  Google Scholar 

  46. K.P. Rice, A.S. Paterson, and M.P. Stoykovich, Part. Part. Syst. Charact. 32, 373 (2015).

    Article  Google Scholar 

  47. B. Maack and N. Nilius, Corros. Sci. 159, 108112 (2019).

    Article  Google Scholar 

  48. K.P. Burnham and D.R. Anderson, Sociol. Methods Res. 33, 261 (2004).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the different imec teams involved in this study. Contributions from imec’s 3D IIAP program are deeply acknowledged. Special thanks for the numerous FIB cross-section requests handled by Dr. E. Vancoille and Dr. Olivier Richard.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors commented on early versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Emmanuel Chery.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chery, E., Croes, K. Low-Temperature Oxidation Kinetics of Polymer-Embedded ECD Copper. JOM 75, 1874–1879 (2023). https://doi.org/10.1007/s11837-023-05727-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05727-4

Navigation