Skip to main content
Log in

Plasticity Anisotropy and Texture of AA1060 Sheets Through a Combination of Accumulative Roll-Bonding and Cryorolling

  • Solid-state Processing of Light Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Ultrafine-grained AA1060 sheets were fabricated by a combination of accumulative roll-bonding and subsequent cryorolling. The effect of rolling temperature on the microstructure evolution and plastic anisotropy was studied. The decrease of rolling temperature resulted in significant grain refinement and strength improvement. The smallest plane anisotropy index and largest cupping value were obtained by the sheet rolled at 83 K, resulting in the best plastic anisotropy and formability. With the decrease of rolling temperature, the severity of Goss texture and Copper texture in the sheet was gradually weakened. The texture component of ARB AA1060 sheets could be optimized by subsequent cryorolling. A reasonable proportion of texture components can be obtained for aluminum alloy, thereby reducing or eliminating earing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data sets generated and analyzed during the current study are available from the corresponding authors on reasonable request.

References

  1. M. Naseri, E. Borhani, O. Imantalab, H.W. Jang, M. Shokouhimehr, and A. Fattah-alhosseini, J. Mater. Res. Technol. 18, 4256 (2022).

    Article  Google Scholar 

  2. J. Li, K. Lu, X. Zhao, X. Ma, F. Li, H. Pan, and J. Chen, J. Mater. Sci. Technol. 131, 185 (2022).

    Article  Google Scholar 

  3. M. Mesbah, G. Faraji, and A.R. Bushroa, Mater. Sci. Eng. A 590, 289 (2014).

    Article  Google Scholar 

  4. M. Naseri, M. Reihanian, and E. Borhani, Mater. Sci. Eng. A 656, 12 (2016).

    Article  Google Scholar 

  5. X. Chen, G. Huang, S. Liu, T. Han, B. Jiang, A. Tang, Y. Zhu, and F. Pan, Trans. Nonferr. Met. Soc. China 29(3), 437 (2019).

    Article  Google Scholar 

  6. L. Chen, G. Chen, J. Tang, G. Zhao, and C. Zhang, Mater. Charact. 158, 109953 (2019).

    Article  Google Scholar 

  7. Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, and Y.T. Zhu, Acta Mater. 52, 4589 (2004).

    Article  Google Scholar 

  8. A. Loucif, R.B. Figueiredo, T. Baudin, F. Brisset, R. Chemam, and T. Langdon, Mater. Sci. Eng. A 532, 139 (2012).

    Article  Google Scholar 

  9. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong, Scr. Mater. 39, 1221 (1998).

    Article  Google Scholar 

  10. N. Tsuji, Y. Saito, H. Utsunomiya, and S. Tanigawa, Scr. Mater. 40, 795 (1999).

    Article  Google Scholar 

  11. S. Zhang, X. Luo, G.Y. Zheng, N.Z. Zhai, Y.Q. Yang, and P.T. Li, Mater. Sci. Eng. A 832, 142482 (2022).

    Article  Google Scholar 

  12. G.L. Shi, K. Zhang, X.G. Li, Y.J. Li, M.L. Ma, and J.W. Yuan, Rare Met. Mater. Eng. 44, 2954 (2015).

    Article  Google Scholar 

  13. A.E. Medvedev, O.O. Zhukova, V.U. Kazykhanov, A.F. Shaikhulova, N.A. Enikeev, V.N. Timofeev, and M.Y. Murashkin, Int. J. Lightweight Mater. Manuf. 5(4), 484 (2022).

    Google Scholar 

  14. H.L. Yu, L.H. Su, C. Lu, K. Tieu, H.J. Li, J.T. Li, A. Godbole, and C. Kong, Mater. Sci. Eng. A 674, 256 (2016).

    Article  Google Scholar 

  15. Y. Ito and Z. Horita, Mater. Sci. Eng. A 503, 32 (2009).

    Article  Google Scholar 

  16. H.L. Yu, H. Wang, C. Lu, K. Tieu, H.J. Li, A. Godbole, X. Liu, C. Kong, and X. Zhao, J. Mater. Res. 31, 797 (2016).

    Article  Google Scholar 

  17. Q.L. Du, C. Li, X.H. Cui, C. Kong, and H.L. Yu, Trans. Nonferr. Met. Soc. China 31, 3370 (2021).

    Article  Google Scholar 

  18. O.B. Bembalge and S.K. Panigrahi, Int. J. Mech. Sci. 191, 106100 (2021).

    Article  Google Scholar 

  19. M. Hussain, P.N. Rao, D. Singh, R. Jayaganthan, S. Goel, and K. Saxena, Mater. Sci. Eng. A 811, 141072 (2021).

    Article  Google Scholar 

  20. W.B. Hutchinson, A. Oscarsson, and A. Karlsson, Mater. Sci. Technol. 5, 1118 (2013).

    Article  Google Scholar 

  21. G.G. Wang, G.S. Huang, K. Liu, J. Zhang, B. Jiang, A. Tang, and F. Pan, Met. Mater. Int. 27, 4322 (2021).

    Article  Google Scholar 

  22. Z.J. Wang, M. Ma, Z.X. Qiu, J.X. Zhang, and W.C. Liu, Mater. Charact. 139, 269 (2018).

    Article  Google Scholar 

  23. M.S. Lee, M.K. Ji, Y.T. Hyun, E.Y. Kim, and T.S. Jun, Mater. Charact. 172, 110834 (2020).

    Article  Google Scholar 

  24. H. Fang, H. Liu, Y. Yan, Y. Li, X. Xu, X. Chu, Y. Lu, and K. Yu, Mater. Lett. 292, 129600 (2021).

    Article  Google Scholar 

  25. F. Shen, D. Yi, B. Wang, H. Liu, Y. Jiang, C. Tang, and B. Jiang, Mater. Sci. Eng. A 675, 386 (2016).

    Article  Google Scholar 

  26. A. Medjahed, H. Moula, A. Zegaoui, M. Derradji, A. Henniche, R. Wu, L. Hou, J. Zhang, and M. Zhang, Mater. Sci. Eng. A 732, 129 (2018).

    Article  Google Scholar 

  27. Z. Li, L. Chen, J. Tang, G. Zhao, C. Zhang, and X. Chu, Mater. Charact. 164, 110299 (2020).

    Article  Google Scholar 

  28. Y. Yao, C. Liu, Y. Gao, S. Yu, S. Jiang, and Z. Chen, Mater. Charact. 144, 641 (2018).

    Article  Google Scholar 

  29. X. Ren, Y. Huang, W. Zhou, L. Zhao, Q. Wang, and X. Min, Mater. Sci. Eng. A 764, 138159 (2019).

    Article  Google Scholar 

  30. H. Inoue and T. Takasugi, Mater. Trans. 48(8), 2014 (2007).

    Article  Google Scholar 

  31. H.J. Bunge, Texture Analysis in Material Science (Butterworths, London, 1982).

    Google Scholar 

  32. H.W. Yang, I.P. Widiantara, and Y.G. Ko, Mater. Lett. 213, 54 (2018).

    Article  Google Scholar 

  33. C.Y. Liu, Q. Wang, Y.Z. Jia, B. Zhang, M.Z. Ma, Q. Jing, and R.P. Liu, Mater. Des. 43, 367 (2013).

    Article  Google Scholar 

  34. K.V. Jata, A.K. Hopkins, and R.J. Rioja, Mater. Sci. Forum 217–222, 647 (1996).

    Article  Google Scholar 

  35. A. Medjahed, H. Moula, A. Zegaoui, M. Derradji, A. Henniche, R. Wu, L. Hou, J. Zhang, and M. Zhang, Mater. Sci. Eng. A 732(8), 129 (2018).

    Article  Google Scholar 

  36. E. Nes and H.E. Vante, Int. J. Mater. Res. 87(6), 448 (1996).

    Article  Google Scholar 

  37. J. Hjeln, L. Sund, and E. Nes, Acta Metal. Mater. 39, 1377 (1991).

    Article  Google Scholar 

  38. M.M. Amiri and F. Fereshteh-Saniee, Trans. Nonferr. Metal Soc. China 31, 901 (2021).

    Article  Google Scholar 

  39. R. Narayanasamy, R. Ravindran, K. Manonmani, and J. Satheesh, Mater. Des. 30, 1804 (2009).

    Article  Google Scholar 

  40. P.D. Wu, K.W. Neale, E. Giessen, M. Jain, S. MacEwen, and A. Makinde, Metal. Mater. Trans. A 29(2), 527 (1998).

    Article  Google Scholar 

  41. Q.Y. Yang, Y.L. Zhou, Y.B. Tan, S. Xiang, M. Ma, and F. Zhao, J. Alloys Compd. 884, 161135 (2021).

    Article  Google Scholar 

  42. O. Engler and K. Knarbakk, J. Mater. Process Technol. 288, 116910 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (Grant Nos. 51674303 and 52105419), China Postdoctoral Science Foundation (Grant Nos. 2022M713505 and 2022T150736) and Natural Science Foundation of Hunan Province, China (Grant No. 2022JJ40596), for the financial support. The authors also thank Dr. Zhengyu Wang at Shimadzu (China) Co., Ltd., for discussion of the XRD results.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haitao Gao or Hailiang Yu.

Ethics declarations

Conflict of interest

The authors confirm that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Q., Gao, H., Li, J. et al. Plasticity Anisotropy and Texture of AA1060 Sheets Through a Combination of Accumulative Roll-Bonding and Cryorolling. JOM 75, 3015–3024 (2023). https://doi.org/10.1007/s11837-023-05716-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05716-7

Navigation