Skip to main content
Log in

Fabrication of Mg-Sn-Y/Al6061 Composite Plates by Asymmetrical Rolling with Differential Temperatures and their Microstructures and Mechanical Properties

  • Solid-state Processing of Light Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Mg/Al composites were successfully fabricated by the differential temperature + asymmetrical rolling (DTAR) and the isothermal + symmetrical rolling (ISR), respectively. The effects of DTAR and ISR on the tensile properties, bonding strength, interface morphology, and microstructure of composite plates were investigated. The results indicated that grains near the Mg layer of the Mg/Al interface were fine and equiaxed because of the occurrence of dynamic recrystallization on the Mg layer. In contrast, the grains at the center and near the Al side interface were elongated. DTAR enhanced the recrystallization degree of Mg side grains. The tensile properties and bonding strength of the composite plates increased gradually with increase in reduction rate, while the interface morphology was gradually flat with increase in reduction rate. The ultimate tensile strength of DTAR sample reaches 205 MPa, which is 25% higher than that of ISR sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Kondoh, J. Umeda, H. Sannomiya, T. Luangvaranunt, and H. Nishikawa, Mater Charact. 157, 109879 (2019).

    Article  Google Scholar 

  2. Z. Chen, D. Wang, X. Cao, W. Yang, and W. Wang, Mater. Sci. Eng. A 723, 97 (2018).

    Article  Google Scholar 

  3. H. Zuo, Z. Yang, X. Chen, Y. Xie, and H. Miao, Compos Struct. 131, 248 (2015).

    Article  Google Scholar 

  4. S. Chen, Z. Zhai, J. Huang, X. Zhao, and J. Xiong, Int. J. Adv. Manuf. Tech. 82, 631 (2016).

    Article  Google Scholar 

  5. Q. Wang, B. Jiang, A. Tang, C. He, D. Zhang, J. Song, T. Yang, G. Huang, and F. Pan, Mater. Sci. Eng. 746, 259 (2019).

    Article  Google Scholar 

  6. M. Yi, S. Fukushima, S. Sugiyama, and J. Yanagimoto, Mater. Sci. Eng. A 624, 148 (2015).

    Article  Google Scholar 

  7. Y. Song, E.H. Han, K. Dong, D. Shan, D.Y. Chang, and B.S. You, Corros. sci. 72, 133 (2013).

    Article  Google Scholar 

  8. J. Tang, L. Chen, G. Zhao, C. Zhang, and J. Yu, J. Alloy Compd. 784, 727 (2019).

    Article  Google Scholar 

  9. T.T. Zhang, W.X. Wang, J. Zhou, X.Q. Cao, Z.F. Yan, Y. Wei, and W. Zhang, JOM. 70, 504 (2018).

    Article  Google Scholar 

  10. W. Yang, F. Bo, Y. Xin, H. Rui, H. Yu, and Q. Liu, Mater. Sci. Eng. 640, 454 (2015).

    Article  Google Scholar 

  11. X.L. Cui, P. Lin, Y.Y. Ma, C.K. Yan, and G. Liu, JOM. 71, 1696 (2018).

    Article  Google Scholar 

  12. S.K. Lee, S.Y. Lee, and N.Y. Kwon, Mater. Sci. Eng. A 628, 1 (2014).

    Google Scholar 

  13. J.S. Kim, K.S. Lee, N.K. Yong, B.J. Lee, Y.W. Chang, and S. Lee, Mater. Sci. Eng. A 628, 1 (2015).

    Article  Google Scholar 

  14. W. Jia, Y. Tang, Q. Le, and J. Cui, J. Alloys Compd. 695, 1838 (2017).

    Article  Google Scholar 

  15. K.J. Tam, M.W. Vaughan, L. Shen, M. Knezevic, and G. Proust, Int J Mech sci. 182, 105727 (2020).

    Article  Google Scholar 

  16. C. Tan, S. Xv, L. Wang, Z. Chen, F. Wang, and H. Cai, Trans. Nonferrous Met. Soc. China. 17, 41 (2007).

    Article  Google Scholar 

  17. Z.Z. Shi, J.Y. Xu, J. Yu, and X.F. Liu, Mater. Sci. Eng. 712, 65 (2018).

    Article  Google Scholar 

  18. Y. Chai, B. Jiang, J. Song, B. Liu, G. Huang, D. Zhang, and F. Pan, Mater. Sci. Eng. A. 746, 82 (2019).

    Article  Google Scholar 

  19. G. Nayyeri, R. Mahmudi, and F. Salehi, Mater. Sci. Eng. A. 527, 5353 (2010).

    Article  Google Scholar 

  20. Q. Wang, Y. Shen, B. Jiang, A. Tang, J. Song, Z. Jiang, T. Yang, G. Huang, and F. Pan, Mater. Sci. Eng. A 731, 184 (2018).

    Article  Google Scholar 

  21. D. Chang, P. Wang, and Y. Zhao, J. Alloys Compd. 746, 259 (2019).

    Google Scholar 

  22. D. Chang, X. Dong, and P. Wang, Rare Met. Mater. Eng. 49, 85 (2020).

    Google Scholar 

  23. X. Li, G. Zu, and P. Wang, Mater. Sci. Eng. A 562, 92 (2013).

    Google Scholar 

  24. W. Xia, J. Cai, and Z. Chen, Chin. J. Nonferrous Met. 20, 1247 (2010).

    Google Scholar 

  25. R. Ding, B. Wang, and C. Ren, Chin. J. Rare Met. 34, 34 (2010).

    Google Scholar 

  26. H. Xiao, Z. Qi, C. Yu, and C. Xu, J. Mater. Process. Technol. 249, 285 (2017).

    Article  Google Scholar 

  27. H. Nie, W. Liang, L. Zheng, X. Ren, and H. Fan, J. Mater. Eng. Perform. 25, 4695 (2016).

    Article  Google Scholar 

  28. J. Zhang, L. Wei, Y. Liu, X. Zhao, X. Li, and B. Zhou, Mater. Sci. Eng. A 590, 314 (2014).

    Article  Google Scholar 

  29. L. Zhang, Q. Wang, W. Liao, W. Guo, B. Ye, W. Li, H. Jiang, and W. Ding, Mater Charact. 126, 17 (2017).

    Article  Google Scholar 

  30. S.H.S. Ebrahimi, K. Dehghani, J. Aghazadeh, M.B. Ghasemian, and S. Zangeneh, Mater. Sci. Eng. 718, 311 (2018).

    Article  Google Scholar 

  31. G. Nussbaum, P. Sainfort, G. Regazzoni, and H. Gjestland, Scr. Metall. 23(7), 1079 (1989).

    Article  Google Scholar 

  32. H. Nie, L. Wei, H. Chen, L. Zheng, C. Chi, and X. Li, Mater. Sci. Eng. A. 732, 6 (2018).

    Article  Google Scholar 

  33. C. Zhi, L. Ma, Q. Huang, Z. Huang, and J. Lin, J. Mater. Process. Tech. 255, 333 (2017).

    Article  Google Scholar 

  34. Z. Hua, W. Cheng, J. Fan, B. Xu, and H. Dong, Mater. Sci. Eng. A 637, 243 (2015).

    Article  Google Scholar 

  35. H. Nie, W. Liang, H. Chen, F. Wang, T. Li, C. Chi, and X.R. Li, Mater. Sci. Eng. A 732, 6 (2018).

    Article  Google Scholar 

  36. T. Han, G. Huang, Q. Deng, G. Wang, B. Jiang, A. Tang, Y. Zhu, and F. Pan, J. Alloys Compd. 745, 599 (2018).

    Article  Google Scholar 

  37. M.G. Jiang, C. Xu, H. Yan, G.H. Fan, T. Nakata, C.S. Lao, R.S. Chen, S. Kamado, E.H. Han, and B.H. Lu, Acta Mater. 157, 53 (2018).

    Article  Google Scholar 

  38. M.Y. Amegadzie, and D.P. Bishop, Mater. Today Commun. 25, 101283 (2020).

    Article  Google Scholar 

  39. T. Wang, S. Li, H. Niu, C. Luo, and M.U. Bashir, J. Mater. Res. Technol. 9, 5840 (2020).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (U1910213), Taiyuan University of Science and Technology Scientific Research Initial Funding (Grant nos. 20202039 and 20212052)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Z., Wu, Z., Ma, L. et al. Fabrication of Mg-Sn-Y/Al6061 Composite Plates by Asymmetrical Rolling with Differential Temperatures and their Microstructures and Mechanical Properties. JOM 75, 2924–2934 (2023). https://doi.org/10.1007/s11837-022-05694-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05694-2

Navigation