Skip to main content
Log in

Investigation of Interface Bonding Mechanism of an Explosively Welded Tri-Metal Titanium/Aluminum/Magnesium Plate by Nanoindentation

  • Beyond Indentation Hardness and Modulus: Advances in Nanoindentation Techniques: Part II
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A tri-metal titanium/aluminum/magnesium (Ti/Al/Mg) cladding plate, with an aluminum alloy interlayer plate, was fabricated for the first time by explosive welding. Nanoindentation tests and associated microstructure analysis were conducted to investigate the interface bonding mechanisms of the Ti/Al/Mg cladding plate. A periodic wavy bonding interface (with an amplitude of approximately 30 μm and a wavelength of approximately 160 μm) without a molten zone was formed between the Ti and Al plates. The bonding interface between the Al and the Mg demonstrated a similar wavy shape, but the wave at this location was much larger with an amplitude of approximately 390 μm and a wavelength of approximately 1580 μm, and some localized melted zones also existed at this location. The formation of the wavy interface was found to result from a severe deformation at the interface, which was caused by the strong impact or collision. The nanoindentation tests showed that the material hardness decreased with increasing distance from the bonding interface. Material hardness at a location was found to be correlated with the degree of plastic deformation at that site. A larger plastic deformation was correlated with an increase in hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Hirsch and T. Al-Samman, Acta Mater. 61, 818 (2013).

    Article  Google Scholar 

  2. W. Xiao, X. Zhang, W.T. Geng, and G. Lu, Mater. Sci. Eng., A 586, 245 (2013).

    Article  Google Scholar 

  3. Y. Liu and Y.J. Wei, Int. J. Plastic. 55, 80 (2014).

    Article  Google Scholar 

  4. N. Stanford, K. Sotoudeh, and P.S. Bate, Acta Mater. 59, 4866 (2011).

    Article  Google Scholar 

  5. Y.B. Yan, Z.W. Zhang, and W. Shen, Mater. Sci. Eng., A 527, 2241 (2010).

    Article  Google Scholar 

  6. N. Kahraman, B. Gülenç, and F. Findik, J. Mater. Process. Tech. 169, 127 (2005).

    Article  Google Scholar 

  7. C. Xu, G.M. Sheng, H. Wang, K. Feng, and X.J. Yuan, J. Mater. Sci. Tech. 32, 167 (2016).

    Article  Google Scholar 

  8. G. Casalino, P. Guglielmi, V.D. Lorusso, M. Mortello, P. Peyre, and D. Sorgente, J. Mater. Process. Tech. 242, 49 (2017).

    Article  Google Scholar 

  9. A. Masayuki and N. Kazuhiro, Mater. Sci. Eng., B 177, 543 (2012).

    Article  Google Scholar 

  10. D.X. Ren, K.M. Zhao, M. Pan, Y. Chang, S. Gang, and D.W. Zhao, Scripta Mater. 126, 58 (2017).

    Article  Google Scholar 

  11. R. Cao, T. Wang, C. Wang, Z. Feng, Q. Lin, and J.H. Chen, J. Alloy. Comp. 605, 12 (2014).

    Article  Google Scholar 

  12. C. Xu, G.M. Sheng, Y.Q. Deng, X.J. Yuan, and K.L. Tang, Sci. Tech. Weld. Joi. 19, 443 (2014).

    Article  Google Scholar 

  13. M. Honarpisheh, M. Asemabadi, and M. Sedighi, Mater. Des. 37, 122 (2012).

    Article  Google Scholar 

  14. Y. Gao, K. Nakata, and K. Nagatsuka, Mater. Des. 65, 17 (2015).

    Article  Google Scholar 

  15. N. Zhang, W.X. Wang, X.Q. Cao, and J.Q. Wu, Mater. Des. 65, 1100 (2015).

    Article  Google Scholar 

  16. H.B. Xia, S.G. Wang, and H.F. Ben, Mater. Des. 56, 1014 (2014).

    Article  Google Scholar 

  17. D.M. Fronczek, J.W. Budka, R. Chulist, and P. Zieba, Mater. Des. 91, 80 (2016).

    Article  Google Scholar 

  18. C. Choi, P. Tan, D. Ruan, and B. Dixon, Mater. Des. 115, 393 (2017).

    Article  Google Scholar 

  19. S.H. Ghaderi (Ph.D. Dissertation, 2008).

  20. J.Q. Wu, W.X. Wang, X.Q. Cao, and N. Zhang, Rare Metall. Mater. Eng. 46, 192 (2017).

    Google Scholar 

  21. M.A. Habib, H. Keno, R. Uchida, A. Mori, and K. Hokamoto, J. Mater. Process. Technol. 217, 310 (2015).

    Article  Google Scholar 

  22. D.M. Fronczek, J. Wojewoda-Budka, R. Chulist, A. Sypien, A. Korneva, Z. Szulc, N. Schell, and P. Zieba, Mater. Des. 91, 80 (2015).

    Article  Google Scholar 

  23. D.V. Lazurenko, I.A. Bataev, V.I. Mali, A.A. Bataev, I.N. Maliutina, V.S. Lozhkin, M.A. Esikov, and A.M.J. Jorge, Mater. Des. 102, 122 (2016).

    Article  Google Scholar 

  24. W. Deng, J.H. Lei, W.L. Qu, and Z.H. Jia, Mater. Sci. Forum 861, 166 (2016).

    Article  Google Scholar 

  25. J.H. Han, J.P. Ahn, and M.C. Shin, J. Mater. Sci. 38, 13 (2003).

    Article  Google Scholar 

  26. Q.L. Chu, M. Zhang, J.H. Lia, and C. Yan, Mater. Sci. Eng., A 689, 323 (2017).

    Article  Google Scholar 

  27. Y.J. Hong, C.S. Zhou, Y.Y. Zheng, L. Zhang, J.Y. Zheng, B. An, and X.Y. Chen, Mater. Charact. 16, 35 (2017).

    Article  Google Scholar 

  28. J.C. Kyoung, K. Taeho, C.Y. Seung, and J.H. Kim, J. Nucl. Mater. 471, 287 (2016).

    Google Scholar 

  29. H.R. Lashgari, J.M. Cadogan, D. Chu, and S. Li, Mater. Des. 92, 919 (2016).

    Article  Google Scholar 

  30. A.A.A. Mousavi and S.T.S.A. Hassani, J. Mech. Phys. Solids 53, 2501 (2005).

    Article  Google Scholar 

  31. X.J. Li, F. Mo, X. Wang, B. Wang, and K. Liu, Sci Technol. Weld Join 17, 269 (2012).

    Article  Google Scholar 

  32. H.R.Z. Rajani and S.A.A.A. Mousavi, Mater. Sci. Eng., A 556, 454 (2012).

    Article  Google Scholar 

  33. M. Acarer, B. Gu¨lenc, and F. Findik, Mater. Des. 24, 6457 (2003).

    Article  Google Scholar 

  34. H.R.Z. Rajani and S.A.A.A. Mousavi, Mater. Sci. Eng., A 556, 454 (2012).

    Article  Google Scholar 

  35. X.J. Li, F. Mo, X. Wang, B. Wang, and K. Liu, Sci Tech. Weld Join 17, 338 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for the generous support of the National Natural Science Foundation of China through Grants 51375328 and 51505322.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. X. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T.T., Wang, W.X., Zhou, J. et al. Investigation of Interface Bonding Mechanism of an Explosively Welded Tri-Metal Titanium/Aluminum/Magnesium Plate by Nanoindentation. JOM 70, 504–509 (2018). https://doi.org/10.1007/s11837-017-2517-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2517-1

Navigation