Skip to main content
Log in

In Situ Spark Plasma Sintering, Microstructure and Mechanical Properties of Fe-15Cr-2Mn-1.5Al Matrix Composites Reinforced with TiB2 and CrFeB

  • Powder Materials and Processing for Extreme Environments
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Fe-15Cr-2Mn-1.5Al metal matrix composites (MMCs) reinforced with TiB2 and CrFeB were synthesized from a Fe, Cr, Mn, Al, Ti, and B powder mixture at 1100°C and 50 MPa for 15 min using an in situ spark plasma sintering (SPS) method. A mechanical alloying process was used to improve the activity and uniformity of the composite powder. The reinforced phase and matrix were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The mechanical properties of the steel-based MMCs were also measured by compression and microhardness. The results showed that the in situ synthesized reinforcements of steel-based MMCs were Cr-rich M2B-type boride (CrFeB) and TiB2, and the matrixes were α-Fe. CrFeB addition improved the plastic deformation capacity and weakened the compressive strength as well as the hardness. The plastic deformation capacity of the (15 vol.% M2B + 10 vol.% TiB2)/Fe-15Cr-2Mn-1.5Al composite equaled ~ 14.3%, which was almost double that of the TiB2/Fe-15Cr-2Mn-1.5Al composite (~ 7.5%). The compressive strength and hardness of the TiB2/Fe-15Cr-2Mn-1.5Al composite equaled ~ 2971 MPa and 781 ± 15 HV, respectively, while the compressive strength and hardness of the (15 vol.% M2B + 10 vol.% TiB2)/Fe-15Cr-2Mn-1.5Al composite equaled ~ 2576 MPa and 659 ± 15 HV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Maria, Incas Bull. 5, 139 (2013).

    Article  Google Scholar 

  2. E.A.M. Shalaby and A.Y. Churyumov, J. Alloys Compd. 727, 540 (2017).

    Article  Google Scholar 

  3. Y.M. Zou, C.L. Tan, Z.G. Tan, W.Y. Tan, M. Kuang, and D.C. Zeng, Addit. Manut. 41, 101971 (2021).

    Google Scholar 

  4. B.H. Li, Y. Liu, H. Cao, L. He, and J. Li, J. Mater. Sci. 44, 3909 (2009).

    Article  Google Scholar 

  5. S.C. Cho, Y.H. Lee, S.M. Ko, H.J. Park, D.H. Lee, S.M. Shin, L. Jo, Y.D. Kim, S.B. Lee, and S.K. Lee, J. Alloys Compd. 817, 152714 (2020).

    Article  Google Scholar 

  6. A. Fedrizzi, M. Pellizzari, M. Zadra, and E. Marin, Mater. Charact. 86, 69 (2013).

    Article  Google Scholar 

  7. D.H. Bacon, L. Edwards, J.E. Moffatt, and M.E. Fitzpatrick, Acta Mater. 59, 3373 (2011).

    Article  Google Scholar 

  8. L. Cha, S. Lartigue-Korinek, M. Walls, and L. Mazerolle, Acta Mater. 60, 6382 (2012).

    Article  Google Scholar 

  9. I. Sulima and G. Boczkal, Micromechanical. Mater. Sci. Eng. A 644, 76 (2015).

    Article  Google Scholar 

  10. S. Iwona, Mater. Charact. 118, 560 (2016).

    Article  Google Scholar 

  11. I. Sulima, R. Kowalik, and P. Hyjek, J. Alloys Compd. 688, 1195 (2016).

    Article  Google Scholar 

  12. S.A.N. Mehrabani, A.T. Tabrizi, H. Aghajani, and H. Pourbagheri, Int. J. Self-propag High 29, 167 (2020).

    Article  Google Scholar 

  13. H. Zhang, H. Springer, R. Aparicio-Fernández, and D. Raabe, Acta Mater. 118, 187 (2016).

    Article  Google Scholar 

  14. R. Aparicio-Fernández, H. Springer, A. Szczepaniak, H. Zhang, and D. Raabe, Acta Mater. 107, 38 (2016).

    Article  Google Scholar 

  15. C. Baron, H. Springer, and D. Raabe, Mater. Des. 111, 185 (2016).

    Article  Google Scholar 

  16. B.H. Li, Y. Liu, J. Li, S.J. Gao, H. Cao, and H. Lin, Mater. Des. 31, 877 (2010).

    Article  Google Scholar 

  17. Z. Xue, J. Kuang, and H. Fu, Mater. Wiss Werkst 39, 557 (2010).

    Article  Google Scholar 

  18. J. Liu, W.P. Chen, L. Chen, Z.B. Xia, H.Q. Xiao, and Z.Q. Fu, J. Alloys Compd. 747, 886 (2018).

    Article  Google Scholar 

  19. Z.F. Huang, J.D. Xing, and C. Guo, Mater. Des. 31, 3084 (2010).

    Article  Google Scholar 

  20. Y. Liu, B. H. Li, J. Li, L. He, S.J. Lin, and T. G. Nieh, Mater. Lett. 64, 1299 (2010).

    Article  Google Scholar 

  21. Z.F. Huang, J.D. Xing, and L.L. Lv, Mater. Charact. 75, 63 (2013).

    Article  Google Scholar 

  22. H.G. Fu, Q. Xiao, J.C. Kuang, Z.Q. Jiang, and J.D. Xing, Mater. Sci. Eng. A 466, 160 (2007).

    Article  Google Scholar 

  23. S.Q. Ma, J.D. Xing, G.F. Liu, D.W. Yi, H.G. Fu, J.J. Zhang, and Y.F. Li, Mater. Sci. Eng. A 527, 6800 (2010).

    Article  Google Scholar 

  24. Z.B. Sun, A. Du, X.M. Cao, and M. Wen, Metal Hotwork. Technol. 36, 9 ((in Chinese)) (2007).

    Google Scholar 

  25. Y.X. Jian, Z.F. Huang, J.D. Xing, and B.Y. Wang, Mater. Charact. 110, 138 (2015).

    Article  Google Scholar 

  26. C.T. Zhou, J.D. Xing, B. Xiao, J. Feng, X.J. Xie, and Y.H. Chen, Comput. Mater. Sci. 44(4), 1056 (2009).

    Article  Google Scholar 

  27. Y.X. Jian, Z.F. Huang, J.D. Xing, X.Z. Guo, Y. Wang, and Z. Lv, Tribol. Int. 103, 243 (2016).

    Article  Google Scholar 

  28. Y.X. Jian, Z.F. Huang, X.T. Liu, J.L. Sun, and J.D. Xing, J. Mater. Sci. Technol. 57, 174 (2020).

    Article  Google Scholar 

  29. J. Liu, and W. Chen, J. Alloys Compd. 741, 348–359 https://doi.org/10.1016/j.jallcom.2018.01.132 (2018).

    Article  Google Scholar 

  30. J. Liu, and W.P. Chen, Vacuum 150, 49 (2018).

    Article  Google Scholar 

  31. X.G. Zeng, Powder Metall. 58, 193 (2015).

    Article  Google Scholar 

  32. A.A. Sorour, R.R. Chromik, and M. Brochu, Powder Metall. 58, 20 (2015).

    Article  Google Scholar 

  33. H.X. Khoa, N.Q. Tuan, Y.H. Lee, B.H. Lee, and J.S. Kim, J. Korean Powder Metall. Inst. 20, 221 (2013).

    Article  Google Scholar 

  34. Z. Yu, H. Fu, Y. Jiang, Q. Cen, Y. Lei, R. Zhou, and H. Guo, Mater. Wiss Werkst 43, 12 (2012).

    Article  Google Scholar 

  35. Z. Lv, H.G. Fu, J.D. Xing, S.Q. Ma, and Y. Hu, J. Alloys Compd. 662, 54 (2016).

    Article  Google Scholar 

  36. M. Ziemnicka-Sylwester, L. Gai, and S. Miura, Mater Design 69, 1 (2015).

    Article  Google Scholar 

  37. Y. Wang, Z.Q. Zhang, H.Y. Wang, B.X. Ma, and Q.C. Jiang, Mater. Sci. Eng.: A 422(1–2), 339–345 https://doi.org/10.1016/j.msea.2006.02.012 (2006).

    Article  Google Scholar 

  38. GB/T 7314-2017, Metallic materials-compression testing at ambient temperature, (National Standard of the People’s Republic of China, Beijing, China, 2017). http://c.gb688.cn/bzgk/gb/showGb?type=online&hcno=8216FA25DB28F50FD47096AB26198632

  39. J. Liu, M. Wu, J. Chen, Z.B. Ye, and C. Du, Materials 14, 2346 (2021).

    Article  Google Scholar 

  40. J. Liu, M. Wu, J. Chen, Z.B. Ye, C. Lin, W. Xu, and W.P. Chen, Trans. India Inst. Mater. 75, 161 (2021).

    Article  Google Scholar 

  41. I. Goldfarb, W.D. Kaplan, S. Ariely, and M. Bamberger, Philos. Mag. A 72, 963 (1995). https://doi.org/10.1080/01418619508239947

    Article  Google Scholar 

  42. A. Röttger, J. Lentz, and W. Theisen, Mater. Des. 88, 420 (2015).

    Article  Google Scholar 

  43. B. Basu, G.B. Raju, and A.K. Suri, Int. Mater. Rev. 51, 352 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Planning Projects of Guangzhou (202102080110), the Science and Technology Planning Projects of Guangzhou (201905010007), the National Natural Science Foundation of China (51805104), the Science and Technology Planning Projects of Guangzhou, China (201803030041), Guangdong education department project (2017GCZX003) and (2020A1515111194), Youth Project of 2020 Guangdong Basic and Applied Basic Research Foundation (Guangdong and Dongguan) Joint Foundation(2020A1515111194).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Liu or Min Wu.

Ethics declarations

Conflicts of Interest

On behalf of all authors, the corresponding author (Jian Liu) states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wu, M., Wang, B. et al. In Situ Spark Plasma Sintering, Microstructure and Mechanical Properties of Fe-15Cr-2Mn-1.5Al Matrix Composites Reinforced with TiB2 and CrFeB. JOM 75, 886–894 (2023). https://doi.org/10.1007/s11837-022-05683-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05683-5

Navigation