Skip to main content
Log in

Structural, Surface Wettability, Optical, Urbach Tail, and Electrical Properties of Spray Pyrolyzed ZnO Thin Films: Role of Air Flow Rate

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Transparent conducting ZnO films were deposited using spray pyrolysis at different air-flow rates (Af). The films are polycrystalline with the most preferred orientation along c-axis [002] direction. The film deposited at Af = 15 lpm show uniform growth of vertically aligned nanorods with hydrophobic surface properties. The film exhibits high transmittance of 95% and dark conductivity of 85.2 Ω−1 cm−1 when deposited at Af = 15 lpm, with a corresponding carrier concentration of n = 3.25 × 1019 /cm3 and mobility of µ = 16.4 cm−2 V−1 s−1. The film thickness and crystallite size decrease with an increase in Af; however, the band gap energy increases from 3.181 eV to 3.254 eV. The band gap energy (Eg) and Urbach energy (Eu) were inversely related, indicating improved crystallinity with lower defect density for lower Eu. The film deposited at Af = 15 lpm shows the highest figure of merit, ΦTC = 1.69 × 10−3 Ω−1 and the lowest sheet resistance Rs = 353 Ω/□.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Lv and X. Li, Phys. Chem. Chem. Phys. 20, 11882. (2018).

    Article  Google Scholar 

  2. C.M. Mahajan and M.G. Takwale, Curr. Appl. Phys. 13, 2109. (2013).

    Article  Google Scholar 

  3. C.M. Mahajan and M.G. Takwale, J. Alloy Compd. 584, 128. (2014).

    Article  Google Scholar 

  4. E. Muchuweni, T.S. Sathiaraj, and H. Nyakotyo, Heliyon 3(4), e00285. (2017).

    Article  Google Scholar 

  5. Y. Kang, F. Yu, L. Zhang, W. Wang, L. Chen, and Y. Li, Solid State Ion. 360, 115544. (2021).

    Article  Google Scholar 

  6. N. Wang and D. Jiang, J. Mater. Sci. 56, 5708. (2021).

    Article  Google Scholar 

  7. J.K. Saha, R.N. Bukke, N.N. Mude, and J. Jang, Sci. Rep. 10, 8999. (2020).

    Article  Google Scholar 

  8. V. Consonni, J. Briscoe, E. Kärber, X. Li, and T. Cossuet, Nanotechnology 30, 36. (2019).

    Article  Google Scholar 

  9. A. Wibowo, M.A. Marsudi, M.I. Amal, M.B. Ananda, R. Stephanie, H. Ardy, and L.J. Diguna, RSC Adv. 10, 42838. (2020).

    Article  Google Scholar 

  10. T. Cao, L. Luo, Y. Huang, B. Ye, J. She, S. Deng, J. Chen, and N. Xu, Sci. Rep. 6, 33983. (2016).

    Article  Google Scholar 

  11. H.G. Park, E.M. Kim, G.S. Heo, H.C. Jeong, J.H. Lee, J.M. Han, T.W. Kim, and D.S. Seo, Opt. Mater. 75, 252. (2018).

    Article  Google Scholar 

  12. M.A. Rahman, J.A. Scott, A. Gentle, M.R. Phillips, and C. Ton-That, Nanotechnology 29, 425707. (2018).

    Article  Google Scholar 

  13. A.T. Ali, W. Maryam, Y.W. Huang, H. Hsu, N.M. Ahmed, N. Zainal, H.A. Hassan, and M.A. Dheyab, JOSA B 38(9), C69. (2021).

    Article  Google Scholar 

  14. G. Wisz, I. Virt, P. Sagan, P. Potera, and R. Yavorskyi, Nanoscale Res. Lett. 12, 253. (2017).

    Article  Google Scholar 

  15. V. Kaushik, S. Rajput, and M. Kumar, Opt. Lett. 45(2), 363. (2020).

    Article  Google Scholar 

  16. Z. Xu and Z. Li, IEEE Sens. J. 21(6), 7428. (2021).

    Article  Google Scholar 

  17. S.M. Yakout, J. Supercond. Nov. Magn. 33, 2557. (2020).

    Article  Google Scholar 

  18. S. Sánchez-Martín, S.M. Olaizola, E. Castaño, E. Urionabarrenetxea, G.G. Mandayo, and I. Ayerdi, RSC Adv. 11, 18493. (2021).

    Article  Google Scholar 

  19. Z. Liu, R. Hu, J. Yu, R. Wang, J. Cheng, M. Huo, T. Wu, and L. Li, Synth. Met. 274, 116737. (2021).

    Article  Google Scholar 

  20. C.A. Ruiz-Rojas, M. Aguilar-Frutis, F. Ramos-Brito, I.A. Garduño-Wilches, J. Narro-Ríos, L. Lartundo-Rojas, and G. Alarcón-Flores, J. Mater. Sci. Mater. Electron 32, 8944. (2021).

    Article  Google Scholar 

  21. B. Al-Farsi, T.M. Souier, F. Al-Marzouqi, M. Al-Maashani, M. Bououdina, H.M. Widatallah, and M. Al-Abri, Opt. Mater. 113, 110868. (2021).

    Article  Google Scholar 

  22. B.C. Ghos, S.F.U. Farhad, and M.A.M. Patwary, ACS Omega 6(4), 2665. (2021).

    Article  Google Scholar 

  23. H. Haga, M. Jinnai, S. Ogawa, T. Kuroda, Y. Kato, and H. Ishizaki, Electr. Eng. Jpn. 214(2), e23320. (2021).

    Article  Google Scholar 

  24. A.I. Khudiar, M.K. Khalaf, and A.M. Ofui, Opt. Mater. 114, 110885. (2021).

    Article  Google Scholar 

  25. S. Liu, L. Zhu, W. Cao, P. Li, Z. Zhan, Z. Chen, X. Yuan, and J. Wang, J. Alloy Compd. 858, 157654. (2021).

    Article  Google Scholar 

  26. S. Kurtaran, Opt. Mater. 114, 110908. (2021).

    Article  Google Scholar 

  27. F. Zahedi, R.S. Dariani, and S.M. Rozati, Mater. Sci. Semicond. Process. 16, 245. (2013).

    Article  Google Scholar 

  28. O. Dobrozhan, D. Kurbatov, A. Opanasyuk, H. Cheong, and A. Cabot, Surf. Interface Anal. 47, 601. (2015).

    Article  Google Scholar 

  29. M.G. Ambia, M.N. Islam, and M.O. Hakim, J. Mater. Sci. 24, 6575. (1994).

    Article  Google Scholar 

  30. A. El Hichou, M. Addou, J. Ebothé, and M. Troyon, J. Lumin. 113(3–4), 183. (2005).

    Article  Google Scholar 

  31. R.S. Gaikwad, G.R. Patil, M.B. Shelar, B.N. Pawar, R.S. Mane, S.H. Han, and O.S. Joo, Int. J. Selfpropag. Hightemp. Synth. 21, 178. (2012).

    Article  Google Scholar 

  32. M.P.F. de Godoy, L.K.S. de Herval, A.A.C. Cotta, Y.J. Onofre, and W.A.A. Macedo, J. Mater. Sci. Mater. Electron. 31, 17269. (2020).

    Article  Google Scholar 

  33. F. Zahedi, R.S. Dariani, and S.M. Rozati, Bull. Mater. Sci. 37, 433. (2014).

    Article  Google Scholar 

  34. S. Golshahi, S.M. Rozati, R. Martins, and E. Fortunato, Thin Solid Film 518(4), 1149. (2009).

    Article  Google Scholar 

  35. C.M. Mahajan, and M.G. Takwale, Micro Nanostruct. 163, 107131. (2022).

    Article  Google Scholar 

  36. V.R. Shinde, T.P. Gujar, and C.D. Lokhande, Sens. Actuator B 120(2), 551. (2007).

    Article  Google Scholar 

  37. L. Filipovic, S. Siegfried, M. Mutinati, E. Brunet, S. Steinhauer, A. Köck, J. Teva, J. Kraft, J. Siegert, and F. Schrank, Microelectron. Eng. 117, 57. (2014).

    Article  Google Scholar 

  38. B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction, 3rd edn. (Prentice Hall, New Jersey, 2001), p 103.

    Google Scholar 

  39. P. Paufler, C.S. Barrett, and T.B. Massalski, Structure of Metals, 3rd edn. (Pergamon Press, Oxford, New York, 1981), p 982.

    Google Scholar 

  40. Powder Diffraction File, Data card 5–644, 3c PDS International Centre for Diffraction Data, Swarthmore, PA.

  41. M. Saleem, L. Fang, H.B. Ruan, F. Wu, Q.L. Huang, C.L. Xu, and C.Y. Kong, Int. J. Phys. Sci. 7(23), 2971. (2012).

    Article  Google Scholar 

  42. M.N.H. Mia, M.F. Pervez, M. Khalid-Hossain, M.R. Rahman, M.J. Uddin, M.A. Al-Mashud, H.K. Ghosh, and M. Hoq, Result Phys. 7, 2683. (2017).

    Article  Google Scholar 

  43. J.C. Manifacier, Thin Solid Film 90, 297. (1982).

    Article  Google Scholar 

  44. C.H. Chao, P.W. Chi, and D.H. Wei, J. Phys. Chem. C 120(15), 8210. (2016).

    Article  Google Scholar 

  45. F. Urbach, Phys. Rev. 92, 1324. (1953).

    Article  Google Scholar 

  46. R.C. Rai, J. Appl. Phys. 113, 153508. (2013).

    Article  Google Scholar 

  47. O. Belahssen, H.B. Temam, S. Lakel, B. Benhaoua, S. Benramache, and S. Gareh, Optik 126, 1487. (2015).

    Article  Google Scholar 

  48. S. Benramache, Y. Aoun, A. Charef, B. Benhaoua, and S. Lakel, Inorg. Nanomet. Chem. 49(6), 177. (2019).

    Google Scholar 

  49. L.J. Van der Pauw, Philos. Res. Rep. 13, 1. (1958).

    Google Scholar 

  50. B.J. Lokhande, P.S. Patil, and M.D. Uplane, Mater. Lett. 57, 573. (2002).

    Article  Google Scholar 

  51. G. Haacke, J. Appl. Phys. 47, 4086. (1976).

    Article  Google Scholar 

  52. Z. Lin-Wang, Mater. Today 7–6, 26. (2004).

    Article  Google Scholar 

  53. C.M. Mahajan, M. Pendharkar, Y.A. Chaudhari, S.S. Sawant, B. Ankamwar, and M.G. Takwale, J. Nanoelectron. Phys. 8, 1. (2016).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Indian Space Research Organization (ISRO), under the scheme GOI-A-337(B) (79), Project No. RESPOND—97, through ISRO-UoP Space Technology Cell, University of Pune.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Mahajan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, C.M. Structural, Surface Wettability, Optical, Urbach Tail, and Electrical Properties of Spray Pyrolyzed ZnO Thin Films: Role of Air Flow Rate. JOM 75, 448–458 (2023). https://doi.org/10.1007/s11837-022-05621-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05621-5

Navigation