Skip to main content
Log in

Role of IMCs in the Spreading-Retracement Process of Sn Droplets Impacting Cu and Stainless Steel Substrates

  • Advances in Surface Engineering
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Rapid printing of three-dimensional (3D) structures can be achieved using 3D printing technology based on homogeneous metal microdrop jetting. This process has several advantages over powder 3D printing technologies as it includes a wide range of jetting materials and unconstrained free forming and does not require expensive specialized equipment. In this study, the dynamic wetting behavior of Sn droplets impacting on copper and stainless steel surfaces was investigated using a combination of experiments and simulations. The coupled level-set volume-of-fluid method was used to establish a numerical model of molten metal droplets impinging on high-temperature substrates and to explore the role of intermetallic compounds (IMCs) in the spreading-retracement process. The results showed that the dynamic wetting processes of Sn droplets on Cu and stainless steel surfaces were significantly different from each other, primarily because of the difference in their intrinsic contact angles and the generation of IMCs in the Sn/Cu system. Moreover, the IMCs had little effect on the droplet spreading process, but had an inhibitory effect on the retracement phenomenon, and the degree of this effect gradually increased as the retracement process continued.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Shahrubudin, T.C. Lee, and R. Ramlan, Proced. Manuf. 35, 1286. https://doi.org/10.1016/j.promfg.2019.06.089 (2019).

    Article  Google Scholar 

  2. C. Buchanan and L. Gardner, Eng. Struct. 180, 332. https://doi.org/10.1016/j.engstruct.2018.11.045 (2019).

    Article  Google Scholar 

  3. M. Orme, J. Mater. Eng. Perform. 2, 399. https://doi.org/10.1007/BF02648828 (1993).

    Article  Google Scholar 

  4. L.H. Qi, S.Y. Zhong, and J. Luo, Scientia Sinica Informationis 45, 212. (2015).

    Article  Google Scholar 

  5. R. Rioboo, C. Tropea, and M. Marengo, Atom. Sprays 11(2), 12. https://doi.org/10.1615/AtomizSpr.v11.i2.40 (2001).

    Article  Google Scholar 

  6. A.L. Yarin, Annu. Rev. Fluid Mech. 38, 159. https://doi.org/10.1146/annurev.fluid.38.050304.092144 (2006).

    Article  Google Scholar 

  7. D. Khojasteh, M. Kazerooni, S. Salarian, and R. Kamali, J. Ind. Eng. Chem 42, 1. https://doi.org/10.1016/j.jiec.2016.07.027 (2016).

    Article  Google Scholar 

  8. S. Moghtadernejad, C. Lee, and M. Jadidi, Fluids 5, 107. https://doi.org/10.3390/fluids5030107 (2020).

    Article  Google Scholar 

  9. A. Asai, M. Shioya, S. Hirasawa, and T. Okazaki, J. Imaging Sci. Technol. 37, 205. (1993).

    Google Scholar 

  10. M. Pasandideh-Fard, Y.M. Qiao, S. Chandra, and J. Mostaghimi, Phys. Fluids 8, 650. https://doi.org/10.1063/1.868850 (1996).

    Article  Google Scholar 

  11. T. Mao, D.C.S. Kuhn, and H. Tran, AIChE J. 43, 2169. https://doi.org/10.1002/aic.690430903 (1997).

    Article  Google Scholar 

  12. C. Ukiwe and D.Y. Kwok, Langmuir 21, 666. https://doi.org/10.1021/la0481288 (2005).

    Article  Google Scholar 

  13. R. Rioboo, M. Marengo, and C. Tropea, Exp. Fluids 33, 112. https://doi.org/10.1007/s00348-002-0431-x (2002).

    Article  Google Scholar 

  14. A. Gultekin, N. Erkan, U. Colak, and S. Suzuki, Exp. Fluids 61, 1. https://doi.org/10.1007/s00348-020-03051-0 (2020).

    Article  Google Scholar 

  15. T. Ma, D. Chen, H. Sun, D. Ma, A. Xu, and P. Wang, European Journal of Mechanics-B/Fluids 88, 123. https://doi.org/10.1016/j.euromechflu.2021.01.013 (2021).

    Article  MathSciNet  Google Scholar 

  16. X. Wang, W. Yu, M. Wang, F. Wang, and B. Wu, Surf. Interfaces 29, 101790. https://doi.org/10.1016/j.surfin.2022.101790 (2022).

    Article  Google Scholar 

  17. X.H. Yang, P. Xiao, S.H. Liang, J.T. Zou, and Z.K. Fan, Acta. Metall. Sin. (Engl. Lett.) 21, 369. https://doi.org/10.1016/S1006-7191(08)60061-7 (2008).

    Article  Google Scholar 

  18. A. Mortensen, B. Drevet, and N. Eustathopoulos, Scr. Mater. 36, 645. https://doi.org/10.1016/S1359-6462(96)00431-9 (1997).

    Article  Google Scholar 

  19. Q. Lin, F. Li, and J. Wang, J. Alloys Compd. 767, 877. https://doi.org/10.1016/j.jallcom.2018.07.201 (2018).

    Article  Google Scholar 

  20. G. Wei, H. Zhang, L. Li, X.Y. Wang, Numerical and zexperimental studies of substrate melting during thermal spraying. Paper presented at heat transfer summer conference, Las Vegas, Nevada, USA. July 21–23, (2003). https://doi.org/10.1115/HT2003-47154

  21. S.H. Kim, H. Kim, and N.J. Kim, Nature 518, 77. https://doi.org/10.1038/nature14144 (2015).

    Article  Google Scholar 

  22. H.T. Lee, M.H. Chen, H.M. Jao, and T. Long Liao, Mater. Sci. Eng. A 358, 134. https://doi.org/10.1016/S0921-5093(03)00277-6 (2003).

    Article  Google Scholar 

  23. N. Zhao, Y. Zhong, M.L. Huang, and W. Dong, Sci. Rep. 5, 13491. https://doi.org/10.1038/srep13491 (2015).

    Article  Google Scholar 

  24. S.D. Aziz and S. Chandra, Int. J. Heat Mass Transfer 43, 2841. https://doi.org/10.1016/S0017-9310(99)00350-6 (2000).

    Article  Google Scholar 

  25. L. Gang-Tao, G. Ya-Li, S. Sheng-Qiang, and A. Phys, Sin. 62, 024705. (2013).

    Google Scholar 

  26. Z. Ke, S. Yang-Zi, J. Yan-Long, Q. Jing, Z. Zhen-Hao and A. Phys, Sin. 68, 244401. (2019).

    Google Scholar 

  27. I.V. Savchenko, S.V. Stankus, and A.S. Agadjanov, High Temp. 49, 506. https://doi.org/10.1134/S0018151X11040171 (2011).

    Article  Google Scholar 

  28. S.M. Kaufman and T.J. Whalen, Acta Metall. 13, 797. https://doi.org/10.1016/0001-6160(65)90144-6 (1965).

    Article  Google Scholar 

  29. H.S. Chen and D. Turnbull, Acta Metall. 16, 369. https://doi.org/10.1016/0001-6160(68)90023-0 (1968).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (Grant Nos. 51465032 and 52061023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiyuan Yu.

Ethics declarations

Conflict of interest

The authors declare no known competing financial interests or personal relationships that influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Yu, W., Wang, X. et al. Role of IMCs in the Spreading-Retracement Process of Sn Droplets Impacting Cu and Stainless Steel Substrates. JOM 75, 45–54 (2023). https://doi.org/10.1007/s11837-022-05566-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05566-9

Navigation