Skip to main content
Log in

Effect of Prior Deformation on the Formation of the Martensite Phase in Ti-6Al-4V Alloy

  • Properties and Evolution of Defects and Interfaces
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effect of prior deformation on the evolution of the martensite phase in Ti-6Al-4V alloy is reported by varying the hot-rolling temperature to have different stored energies. While the morphology of the martensite phase is greatly influenced by the prior deformation, the phase fraction is primarily dependent on the quenching temperature. The compositional deviation from the equilibrium condition, emerging from the differences in the diffusion of elements at different rolling temperatures, govern the nucleation and aspect ratio of the martensite laths. Higher stored energy in the deformed samples, calculated as the dislocation density, is found to derive the formation of a twinned plate martensite. Martensitic transformation, irrespective of the prior deformation condition, induces a strong variant selection based on the minimization of the transformation strain energy. However, a strong correlation between the morphology and the character of the intervariant boundaries of the martensite phase is established. The intervariant boundary distribution in martensite showed three major angle–axis pairs associated with the Burgers orientation relationship. The hardness of the martensite phase is determined by the solid solution strengthening, martensite morphology, and microstrain present in the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data related to the present work will be made available upon reasonable request.

References

  1. F. Froes, J. Met. 39(3), 12 (1987). https://doi.org/10.1007/BF03258872

    Article  Google Scholar 

  2. C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications (Wiley, Weinheim, 2003). https://doi.org/10.1002/3527602119

    Book  Google Scholar 

  3. R. Boyer, J. Met. 62(5), 21 (2010). https://doi.org/10.1007/s11837-010-0071-1

    Article  Google Scholar 

  4. R.R. Boyer, J. Met. 44(5), 23 (1992). https://doi.org/10.1007/BF03223045

    Article  Google Scholar 

  5. P. Bania, J. Met. 46(7), 16 (1994). https://doi.org/10.1007/BF03220742

    Article  Google Scholar 

  6. B. Sengupta, S. Shekhar, and K.N. Kulkarni, Mater. Sci. Eng. A 696, 478 (2017). https://doi.org/10.1016/j.msea.2017.04.106

    Article  Google Scholar 

  7. I. Gurrappa, Mater. Charact. 51(2–3), 131 (2003). https://doi.org/10.1016/j.matchar.2003.10.006

    Article  Google Scholar 

  8. S.S. Al-Bermani, M.L. Blackmore, W. Zhang, and I. Todd, Metall. Trans. A 41A(13), 3422 (2010). https://doi.org/10.1007/s11661-010-0397-x

    Article  Google Scholar 

  9. I. Weiss, F. Froes, D. Eylon, and G. Welsch, Metall. Trans. A 17(11), 1935 (1986). https://doi.org/10.1007/BF02644991

    Article  Google Scholar 

  10. R. Ding, Z. Guo, and A. Wilson, Metall. Mater. Trans. A 327(2), 233 (2002). https://doi.org/10.1016/S0921-5093(01)01531-3

    Article  Google Scholar 

  11. S. Zherebtsov, M. Murzinova, A. Salishchev, and S.L. Sennatin, Acta Mater. 59(10), 4138 (2011). https://doi.org/10.1016/j.actamat.2011.03.037

    Article  Google Scholar 

  12. G. Lütjering and J.C. Williams, Titanium, 2nd edn. (Springer, Berlin, 2007). https://doi.org/10.1007/978-3-540-73036-1

    Book  Google Scholar 

  13. H. Matsumoto, H. Yoneda, K. Sato, S. Kurosu, E. Maire, D. Fabregue, T.J. Konno, and A. Chiba, Mater. Sci. Eng. A 528(3), 1512 (2011). https://doi.org/10.1016/j.msea.2010.10.070

    Article  Google Scholar 

  14. Y. Chong, T. Bhattacharjee, J. Yi, A. Shibata, and N. Tsuji, Scr. Mater. 138, 66 (2017). https://doi.org/10.1016/j.scriptamat.2017.05.038

    Article  Google Scholar 

  15. B. Guo, S. Semiatin, J.J. Jonas, and S. Yue, J. Mech. Behav. Biomed. Mater. 53(12), 9305 (2018). https://doi.org/10.1007/s10853-018-2237-0

    Article  Google Scholar 

  16. B. Guo, A. Fall, M. Jahazi, and J.J. Jonas, Metall. Mater. Trans. A 49(12), 5956 (2018). https://doi.org/10.1007/s11661-018-4952-1

    Article  Google Scholar 

  17. B. Guo, S. Semiatin, J. Liang, B. Sun, and J.J. Jonas, Metall. Mater. Trans. A 49(5), 1450 (2018). https://doi.org/10.1007/s11661-018-4551-1

    Article  Google Scholar 

  18. B. Guo, C. Aranas, B. Sun, X. Ji, and J.J. Jonas, Metall. Mater. Trans. A 49(1), 22 (2018). https://doi.org/10.1007/s11661-017-4403-4

    Article  Google Scholar 

  19. X. Ji, H. Yu, B. Guo, F. Jiang, D. Fu, J. Teng, H. Zhang, and J.J. Jonas, Mater. Des. 188(108), 466 (2020). https://doi.org/10.1016/j.matdes.2019.108466

    Article  Google Scholar 

  20. F. Caballero and H. Bhadeshia, Curr. Opin. Solid State Mater. Sci. 8(3–4), 251 (2004). https://doi.org/10.1016/j.cossms.2004.09.005

    Article  Google Scholar 

  21. X. Wang, N. Zhong, Y. Rong, T. Hsu, and L. Wang, J. Mater. Res. 24(1), 260 (2009). https://doi.org/10.1557/JMR.2009.0029

    Article  Google Scholar 

  22. T. Wang, M. Zhang, Y. Wang, J. Yang, and F. Zhang, Scr. Mater. 68(2), 162 (2013). https://doi.org/10.1016/j.scriptamat.2012.10.016

    Article  Google Scholar 

  23. D. Field, P. Trivedi, S. Wright, and M. Kumar, Ultramicroscopy 103(1), 33 (2005). https://doi.org/10.1016/j.ultramic.2004.11.016

    Article  Google Scholar 

  24. N. Doebelin and R. Kleeberg, J. Appl. Crystallogr. 48(5), 1573 (2015). https://doi.org/10.1107/S1600576715014685

    Article  Google Scholar 

  25. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys (Revised Reprint) (CRC, Boca Raton, 2009). https://doi.org/10.1201/9781439883570

    Book  Google Scholar 

  26. Y. Xu, S. Zhang, M. Cheng, and H. Song, Scr. Mater. 67(9), 771 (2012). https://doi.org/10.1016/j.scriptamat.2012.07.021

    Article  Google Scholar 

  27. B. Sandvik and C. Wayman, Metall. Trans. A 14(4), 835 (1983). https://doi.org/10.1007/BF02644286

    Article  Google Scholar 

  28. S. Semiatin, S. Knisley, P. Fagin, D. Barker, and F. Zhang, Metall. Mater. Trans. A 34(10), 2377 (2003). https://doi.org/10.1007/s11661-003-0300-0

    Article  Google Scholar 

  29. K.A. Bywater and J.W. Christian, Philos. Mag. 25(6), 1249 (1972). https://doi.org/10.1080/14786437208223852

    Article  Google Scholar 

  30. M. Bignon, E. Bertrand, P.E. Rivera-Díaz-Del-Castillo, and F. Tancret, J. Alloys Compd. 872(159), 636 (2021). https://doi.org/10.1016/j.jallcom.2021.159636

    Article  Google Scholar 

  31. M. Koul and J. Breedis, Acta Metall. 18(6), 579 (1970). https://doi.org/10.1016/0001-6160(70)90087-8

    Article  Google Scholar 

  32. F. Kaschel, R.K. Vijayaraghavan, A. Shmeliov, E. McCarthy, M. Canavan, P.J. McNally, D. Dowling, V. Nicolosi, and M. Celikin, Acta Mater. 188, 720 (2020). https://doi.org/10.1016/j.actamat.2020.02.056

    Article  Google Scholar 

  33. F. Kaschel, R. Vijayaraghavan, P.J. McNally, D.P. Dowling, and M. Celikin, Mater. Sci. Eng. A 819(141), 534 (2021). https://doi.org/10.1016/j.msea.2021.141534

    Article  Google Scholar 

  34. T. Maki, in Phase Transformations in Steels, Woodhead Publishing Series in Metals and Surface Engineering, vol. 2, ed. by E. Pereloma, D.V. Edmonds (Woodhead, Sawston, 2012), pp. 34–58. https://doi.org/10.1533/978085709611.1.34

    Chapter  Google Scholar 

  35. K.N. Chaithanya Kumar and K.S. Suresh, Mater. Lett. 306(130), 903 (2022). https://doi.org/10.1016/j.matlet.2021.130903

    Article  Google Scholar 

  36. Q. Chao, P.D. Hodgson, and H. Beladi, Metall. Mater. Trans. A 45A(5), 2659 (2014). https://doi.org/10.1007/s11661-014-2205-5

    Article  Google Scholar 

  37. M.V. Pantawane, S. Sharma, A. Sharma, S. Dasari, S. Banerjee, R. Banerjee, and N.B. Dahotre, Acta Mater. 213(116), 954 (2021). https://doi.org/10.1016/j.actamat.2021.116954

    Article  Google Scholar 

  38. E. Farabi, V. Tari, P.D. Hodgson, G.S. Rohrer, and H. Beladi, J. Mater. Sci. 55(31), 15299 (2020). https://doi.org/10.1007/s10853-020-05075-7

    Article  Google Scholar 

  39. H. Beladi, Q. Chao, and G.S. Rohrer, Acta Mater. 80, 478 (2014). https://doi.org/10.1016/j.actamat.2014.06.064

    Article  Google Scholar 

  40. D. Srivastava, P. Mukhopadhyay, S. Banerjee, and S. Ranganathan, Mater. Sci. Eng. A 288(1), 101 (2000). https://doi.org/10.1016/S0921-5093(00)00818-2

    Article  Google Scholar 

  41. K.S. Suresh, T. Kitashima, and Y. Yamabe-Mitarai, Mater. Sci. Eng. A 618, 335 (2014). https://doi.org/10.1016/j.msea.2014.09.031

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from Department of Science and Technology, Government of India through Indo-Russia collaboration (Grant No. INT/RNS/RFBR/P-284) and from Ministry of Education, Government of India (SPARC 1004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Suresh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 782 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaithanya Kumar, K.N., Babu, R.P. & Suresh, K.S. Effect of Prior Deformation on the Formation of the Martensite Phase in Ti-6Al-4V Alloy. JOM 74, 4081–4093 (2022). https://doi.org/10.1007/s11837-022-05476-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05476-w

Navigation