Skip to main content
Log in

An Experimental Study on the Role of Partial Replacement of Y with Ce in a Novel Quinary AlNiCoYCex High Entropy Metallic Glasses

  • Recent Advances in Multicomponent Alloys and Ceramics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

For the balanced consumption of pricey rare-earth element yttrium (Y) and improved pitting corrosion resistance of alloys, Y was partially substituted by cerium (Ce) in a novel kind of quinary AlNiCoYCex high-entropy metallic glass (HE-MG) via vacuum arc melting and rapid solidification. The microstructure, thermal stability and micro-hardness of Al30Ni30Co8Y32-xCex (x = 1, 2, 3, 4, 5, and 8 at%) high-entropy metallic glass ribbons (hereafter referred to as HE-MG ribbons) have been systematically investigated. In addition, the electrochemical corrosion properties of these amorphous ribbons with different Ce content in 3.5 wt.% NaCl solution have been determined by potentiodynamic polarization and electrochemical impedance spectroscopy. After 100 h immersion in corrosive media, scanning electron microscope images of the corroded ribbons were also characterized. The results indicated that these ribbon samples could remain in an amorphous state, and the that micro-hardness was more than 495 HV0.1. With increasing Ce content, the thermal stability started to gradually increase and then decrease. Furthermore, Ce is responsible for an improvement in anticorrosion performance compared with the Ce-free alloys. Ce-containing HE-MG ribbons showed a passive region in the electrochemical reaction, and ribbons with 3 at% Ce exhibited the most corrosion resistance by virtue of the smallest Icorr and Ipass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.H. Chen, X.J. Mi, G.J. Huang, and Y.F. Li, Mater. Res. Express 6, 016518. https://doi.org/10.1088/2053-1591/aae1e6 (2019).

    Article  Google Scholar 

  2. S. Chi, J. Park, and M. Shon, J. Ind. Eng. Chem. 26, 384. https://doi.org/10.1016/j.jiec.2014.12.013 (2015).

    Article  Google Scholar 

  3. T.Y. Zhang, W. Liu, B.J. Dong, R. Mao, Y.P. Sun, and L.J. Chen, J. Phys. Chem. Solids. 163, 110584. https://doi.org/10.1016/j.jpcs.2022.110584 (2022).

    Article  Google Scholar 

  4. F.J. Antunes, V.R.D.S. de Sá Brito, I.N. Bastos, and H.R.M. Costa, Appl. Adhes. Sci. 1, 3. https://doi.org/10.1186/2196-4351-1-3 (2013).

    Article  Google Scholar 

  5. J. Gao, W. Hu, R. Wang, and X. Li, Polym. Test. 100, 107259. https://doi.org/10.1016/j.polymertesting.2021.107259 (2021).

    Article  Google Scholar 

  6. S.Y. Zhang, Y.Y. Gao, Z.B. Zhang, T. Gu, X.B. Liang, and L. Wang, Chin. J. Rare Met. 45, 717. (2021).

    Google Scholar 

  7. S.Y. Zhang, Z.B. Zhang, Y.Y. Gao, X.B. Liang, and L.Z. Wang, Rare Met. Mater. Eng. 50, 2215. (2021).

    Google Scholar 

  8. C. Zhang, D. Ouyang, S. Pauly, and L. Liu, Mater. Sci. Eng. R. 145, 100625. https://doi.org/10.1016/j.mser.2021.100625 (2021).

    Article  Google Scholar 

  9. Y. Qiu, M.A. Gibson, H.L. Fraser, and N. Birbilis, Mater. Sci. Technol. 31, 1235. https://doi.org/10.1179/1743284715Y.0000000026 (2015).

    Article  Google Scholar 

  10. H. Sahin, and H. Zengin, Int. J. Metalcast. https://doi.org/10.1007/s40962-021-00744-y (2022).

    Article  Google Scholar 

  11. J. Cheng, Y. Feng, C. Yan, X. Hu, R. Li, and X. Liang, JOM. 72, 745. https://doi.org/10.1007/s11837-019-03966-y (2020).

    Article  Google Scholar 

  12. A. Aditya, H. Felix Wu, H. Arora, and S. Mukherjee, JOM 69, 2150. https://doi.org/10.1007/s11837-017-2384-9 (2017).

    Article  Google Scholar 

  13. S.Y. Zhang, Z.B. Zhang, P.F. He, Z.F. Hu, Z.Y. Jing, Y.Y. Gao, and X.B. Liang, J. Non-Cryst. Solids. 576, 121268. https://doi.org/10.1016/j.jnoncrysol.2021.121268 (2022).

    Article  Google Scholar 

  14. S.Y. Zhang, Z.B. Zhang, X. Wang, Y.Y. Gao, X.B. Liang, and L. Wang, Rare Met. Mater. Eng. 50, 4587. (2021).

    Google Scholar 

  15. Q. Ren, and L.F. Zhang, Metall. Mater. Trans. B. 51, 589. https://doi.org/10.1007/s11663-020-01779-y (2020).

    Article  Google Scholar 

  16. L. Yang, M. Bi, J. Jiang, X. Ding, M. Zhu, W. Li, Z. Lv, and Z. Song, J. Magn. Magn. Mater. 432, 181. https://doi.org/10.1016/j.jmmm.2017.01.094 (2017).

    Article  Google Scholar 

  17. L.M. Zhang, S.D. Zhang, A.L. Ma, A.J. Umoh, H.X. Hu, Y.G. Zheng, B.J. Yang, and J.Q. Wang, J. Mater. Sci. Technol. 35, 1378. https://doi.org/10.1016/j.jmst.2019.03.014 (2019).

    Article  Google Scholar 

  18. X. Li, W. Xia, H. Yan, J. Chen, and X. Li, Corros. Eng. Sci. Technol. 55, 381. https://doi.org/10.1080/1478422X.2020.1735716 (2020).

    Article  Google Scholar 

  19. K. Liu, C. Chen, J. He, B. Liu, B. Ma, H. Xue, B. Yang, S. Wang, and H. Liu, Mater. Res. Exp. 8, 096518. https://doi.org/10.1088/2053-1591/ac19e7 (2021).

    Article  Google Scholar 

  20. L.F.S. Baroni, R. Silva, G.S. Vacchi, V.L. Sordi, and C.A.D. Rovere, Mater. Today Commun. 25, 101649. https://doi.org/10.1016/j.mtcomm.2020.101649 (2020).

    Article  Google Scholar 

  21. W. Tian, M. Hu, X. Chen, H. Zhou, Y. Sun, Q. Lu, and M. Wan, Mater. Res. Exp. 7, 036532. https://doi.org/10.1088/2053-1591/ab80aa (2020).

    Article  Google Scholar 

  22. L.C. Xie, C.Q. Peng, R.C. Wang, Z.Y. Cai, W.S. Liu, and R.L. Ma, Rare Met. Mater. Eng. 44, 1006. (2015).

    Google Scholar 

  23. X. Yang, and Y. Zhang, Mater. Chem. Phys. 132, 233. https://doi.org/10.1016/j.matchemphys.2011.11.021 (2012).

    Article  Google Scholar 

  24. S. Guo, Mater. Sci. Technol. 31, 1223. https://doi.org/10.1179/1743284715Y.000000001 (2015).

    Article  Google Scholar 

  25. T. Yu, H. Wang, K. Han, and B. Zhang, Vacuum 199, 110928. https://doi.org/10.1016/j.vacuum.2022.110928 (2022).

    Article  Google Scholar 

  26. S. Guo, and C.T. Liu, Prog. Nat. Sci.: Mater. Int. 21, 433. https://doi.org/10.1016/S1002-0071(12)60080-X (2011).

    Article  Google Scholar 

  27. P.K. Rai, B. Satapathy, K. Sarkar, P. Bijalwan, M. Dutta, A. Banerjee, and K. Mondal, J. Non-Cryst. Solids 532, 119883. https://doi.org/10.1016/j.jnoncrysol.2019.119883 (2020).

    Article  Google Scholar 

  28. M. Malekan, R. Rashidi, and S.G. Shabestari, Vacuum 174, 109223. https://doi.org/10.1016/j.vacuum.2020.109223 (2020).

    Article  Google Scholar 

  29. M. Mansouri, A. Simchi, N. Varahram, and E.S. Park, Mater. Sci. Eng. A 604, 92. https://doi.org/10.1016/j.msea.2014.03.012 (2014).

    Article  Google Scholar 

  30. S.A. Uporov, N.S. Uporova, V.A. Bykov, T.V. Kulikova, and S.V. Pryanichnikov, J. Alloys Compd. 586, S310. https://doi.org/10.1016/j.jallcom.2012.09.093 (2014).

    Article  Google Scholar 

  31. B. Rusanov, V. Sidorov, P. Svec, P. Svec, D. Janickovic, A. Moroz, L. Son, and O. Ushakova, J. Alloys Compd. 787, 448. https://doi.org/10.1016/j.jallcom.2019.02.058 (2019).

    Article  Google Scholar 

  32. J. Guo, X. Hu, J. Liu, T. Feng, E.Y. Yoon, and H.S. Kim, Arch. Metall. Mater. 60, 1543. https://doi.org/10.1515/amm-2015-0169 (2015).

    Article  Google Scholar 

  33. M. Yang, X.J. Liu, Y. Wu, H. Wang, S.H. Jiang, X.Z. Wang, and Z.P. Lu, SCI SIN-PHYS MECH AS. 50, 21. (2020).

    Google Scholar 

  34. P. Gong, K.R. Li, D.L. Wang, M. Zhang, L. Deng, J.S. Jin, and X.Y. Wang, Chin. Sci. Bull. 67, 1103. https://doi.org/10.1360/TB-2021-1124 (2022).

    Article  Google Scholar 

  35. K. Chong, Z.B. Zhang, Y. Zou, and X.B. Liang, Mater. Rep. 35, 17019. https://doi.org/10.11896/cldb.20120197 (2021).

    Article  Google Scholar 

  36. Z.B. Zhang, S.Y. Zhang, Y.X. Chen, Y.Y. Gao, and X.B. Liang, China Surf. Eng. 34, 76. https://doi.org/10.11933/j.issn.1007-9289.20210512001 (2021).

    Article  Google Scholar 

  37. W. Dong, X. Wu, and M. Yan, Met. Mater. Int. 27, 4286. https://doi.org/10.1007/s12540-020-00720-x (2021).

    Article  Google Scholar 

  38. D.B. Miracle, and O.N. Senkov, Acta Mater. 122, 448. https://doi.org/10.1016/j.actamat.2016.08.081 (2017).

    Article  Google Scholar 

  39. C. Chattopadhyay, and B.S. Murty, Scr. Mater. 116, 7. https://doi.org/10.1016/j.scriptamat.2016.01.022 (2016).

    Article  Google Scholar 

  40. J. Cheng, B. Sun, Y. Ge, X. Hu, L. Zhang, X. Liang, and X. Zhang, Surf. Coat. Technol. 402, 126321. https://doi.org/10.1016/j.surfcoat.2020.126321 (2020).

    Article  Google Scholar 

  41. E. Karakose, A.M. Ibrahim, and M. Keskin, J. Inorg. Organomet. Polym. Mater. 28, 2645. https://doi.org/10.1007/s10904-018-0929-1 (2018).

    Article  Google Scholar 

  42. S. Zhao, H. Wang, L. Xiao, N. Guo, D. Zhao, K. Yao, and N. Chen, Phy. E. 94, 100. https://doi.org/10.1016/j.physe.2017.07.021 (2017).

    Article  Google Scholar 

  43. R.K. Mishra, and R.R. Shahi, J. Magn. Magn. Mater. 516, 167342. https://doi.org/10.1016/j.jmmm.2020.167342 (2020).

    Article  Google Scholar 

  44. M. Wu, R.C. Setiawan, and D.Y. Li, Wear 492–493, 204231. https://doi.org/10.1016/j.wear.2021.204231 (2022).

    Article  Google Scholar 

  45. P. Cheng, Y. Chen, and W. Ding, Mater. Sci. Forum. 904, 80. https://doi.org/10.4028/www.scientific.net/MSF.904.80 (2017).

    Article  Google Scholar 

  46. J. Henao, A. Concustell, I.G. Cano, S. Dosta, N. Cinca, J.M. Guilemany, and T. Suhonen, Mater. Des. 94, 253. https://doi.org/10.1016/j.matdes.2016.01.040 (2016).

    Article  Google Scholar 

  47. O. Mohamed, M. Hassan, M. Egilmez, W. Abuzaid, T. Ibrahim, and M. Khamis, Mater. Today Commun. 30, 103015. https://doi.org/10.1016/j.mtcomm.2021.103015 (2022).

    Article  Google Scholar 

  48. W. Li, and D.J. Kong, Anti-Corros. Methods Mater. 69, 171. https://doi.org/10.1108/ACMM-11-2021-2568 (2022).

    Article  Google Scholar 

  49. X.B. Liang, J.W. Fan, Z.B. Zhang, and Y.X. Chen, Acta. Metall. Sinica. 54, 1193. https://doi.org/10.11900/0412.1961.2017.00491 (2018).

    Article  Google Scholar 

  50. X. Qi, B. Sun, X.M. Chen, and R.G. Song, J. Wuhan Univ. Technol. Mater. Sci. 35, 986. https://doi.org/10.1007/s11595-020-2346-x (2020).

    Article  Google Scholar 

  51. P.C. Cui, Z.J. Bao, Y. Liu, F. Zhou, Z.H. Lai, Y. Zhou, and J.C. Zhu, Corros. Sci. 201, 110276. https://doi.org/10.1016/j.corsci.2022.110276 (2022).

    Article  Google Scholar 

  52. X.Y. Gu, Y.X. Zhuang, and D. Huang, Intermetallics 147, 107600. https://doi.org/10.1016/j.intermet.2022.107600 (2022).

    Article  Google Scholar 

  53. P. Li, X. Huang, and D. Kong, Anti-Corros. Methods Mater. 68, 95. https://doi.org/10.1108/ACMM-08-2020-2357 (2021).

    Article  Google Scholar 

  54. Z. Dan, K. Takenaka, Y. Zhang, S. Unami, A. Takeuchi, N. Hara, A. Makino, and J. Non-Cryst, Solids 402, 36. https://doi.org/10.1016/j.jnoncrysol.2014.05.007 (2014).

    Article  Google Scholar 

  55. Y. Ge, J. Cheng, C. Yan, B. Zhang, S. Zhu, L. Xue, S. Hong, Y. Wu, Z. Zhang, X. Liang, and X. Zhang, Intermetallics 143, 107473. https://doi.org/10.1016/j.intermet.2022.107473 (2022).

    Article  Google Scholar 

  56. Z. Xu, H. Zhang, X. Du, Y. He, H. Luo, G. Song, L. Mao, T. Zhou, and L. Wang, Corros. Sci. 177, 108954. https://doi.org/10.1016/j.corsci.2020.108954 (2020).

    Article  Google Scholar 

  57. Y. Wang, J.S. Jin, M. Zhang, F.M. Liu, X.Y. Wang, P. Gong, and X.F. Tang, J. Alloys Compd. 891, 161822. https://doi.org/10.1016/j.jallcom.2021.161822 (2022).

    Article  Google Scholar 

  58. Y. Liu, K. Zhang, J. Zou, P. Yan, X. Zhang, and L. Song, J. Magnes. Alloys 9, 216. https://doi.org/10.1016/j.jma.2020.02.019 (2021).

    Article  Google Scholar 

  59. Y. Tang, X. Shen, Y. Qiao, L. Yang, J. Chen, D. Lu, and Z. Zhang, J. Mater. Eng. Perform. 30, 5506. https://doi.org/10.1007/s11665-021-05909-8 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are sincerely grateful to eceshi (www.eceshi.com) for the TEM analysis and characterization, and to Shiyanjia Lab (www.shiyanjia.com) for the XRD and SEM characterization. The authors also gratefully appreciate that Prof. Shen Baolong from Southeast University and Dr. Chen Changjiu from China University of Mining and Technology have provided help on using the experiment facilities and the alloy ribbon preparation site for our study. Specifically, the first author, Zhang Shuyan, appreciates the scientific insight and help from Dr. He Pengfei from the Defense Innovation Institute and Dr. Xue Lin from Hohai University during the revision process of our manuscript.

Funding

This project was supported by the National Key Research and Development Program of China (Grant No. 2018YFC1902400) and National Natural Science Foundation of China (Grant No. 51975582).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuyan Zhang or Xiubing Liang.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1099 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zhang, Z., Li, X. et al. An Experimental Study on the Role of Partial Replacement of Y with Ce in a Novel Quinary AlNiCoYCex High Entropy Metallic Glasses. JOM 74, 4215–4225 (2022). https://doi.org/10.1007/s11837-022-05426-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05426-6

Navigation