Skip to main content
Log in

Effect of Aging Time on the Corrosion Resistance of the As-cast Al-Cu-Mg-Mn Alloy

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Cast Al-Cu-Mg-Mn alloy, prepared by differential pressure casting method, was quenched at 530 °C and aged at 170 °C. The effect of aging time on the corrosion resistance of the Al alloy was investigated in 3.5 wt.% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy tests. The results indicated that the aging time had great influence on the distribution of the Al2Cu phase. A small amount of fine second phase had precipitated along grain boundaries to strengthen the alloy when the aging time was 6 h. Extended aging time led to the rapid growth of the second phase. Pitting corrosion occurred at the interface between the Al2Cu phase and α-Al matrix in 3.5wt.% NaCl solution. The Al2Cu phase with a small size easily fell off to form corrosion pits during the corrosion process, leading to more serious pitting corrosion. However, a network-like Al2Cu phase prevented its falling off, improving pitting corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Dursun and C. Soutis, Mater. Des. https://doi.org/10.1016/j.matdes.2013.12.002 (2014).

    Article  Google Scholar 

  2. S.G. Pantelakis, A.N. Chamos, and A.T. Kermanidis, Theor. Appl. Fract. Mech. https://doi.org/10.1016/j.tafmec.2011.12.006 (2012).

    Article  Google Scholar 

  3. J. Liu and M. Kulak, Mater. Sci. Forum. https://doi.org/10.4028/www.scientific.net/MSF.331-337.127 (2000).

    Article  Google Scholar 

  4. Q. Zheng, C. Yang, S. Wang, A. Yu, H. Chen, and Y. He, Mater. Res. Innovations. https://doi.org/10.1179/1432891714z.000000000377 (2014).

    Article  Google Scholar 

  5. J.B. Zhang, Y.A. Zhang, B.H. Zhu, R.Q. Liu, F. Wang, and Q.M. Liang, Mater. Des. https://doi.org/10.1016/j.matdes.2013.01.044 (2013).

    Article  Google Scholar 

  6. Y. Meng, Z. Zhao, and J. Cui, Trans. Nonferrous Met. Soc. China. https://doi.org/10.1016/s1003-6326(13)62673-4 (2013).

    Article  Google Scholar 

  7. X.Y. Liu, Q.L. Pan, X.L. Zhang, S.X. Liang, F. Gao, L.Y. Zheng, and M.X. Li, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2014.01.090 (2014).

    Article  Google Scholar 

  8. S. Bai, X. Zhou, Z. Liu, P. Xia, M. Liu, and S. Zeng, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2014.05.065 (2014).

    Article  Google Scholar 

  9. Y.C. Lin, Y. Ding, M.S. Chen, and J. Deng, Mater. Des. https://doi.org/10.1016/j.matdes.2013.05.036 (2013).

    Article  Google Scholar 

  10. Z. Szklarska-Smialowska, Corros. Sci. https://doi.org/10.1016/s0010-938x(99)00012-8 (1999).

    Article  Google Scholar 

  11. J. Geng, Y. Li, G. Liu, H. Xiao, T. Hong, J. Huang, M. Wang, D. Chen, and H. Wang, Mater. Charact. https://doi.org/10.1016/j.matchar.2020.110571 (2020).

    Article  Google Scholar 

  12. S. Gollapudi, Corros. Sci. https://doi.org/10.1016/j.corsci.2012.04.040 (2012).

    Article  Google Scholar 

  13. X. Zhang, X. Zhou, T. Hashimoto, J. Lindsay, O. Ciuca, C. Luo, Z. Sun, X. Zhang, and Z. Tang, Corros. Sci. https://doi.org/10.1016/j.corsci.2016.12.005 (2017).

    Article  Google Scholar 

  14. J.F. Li, Z.Q. Zheng, S.C. Li, W.J. Chen, W.D. Ren, and X.S. Zhao, Corros. Sci. https://doi.org/10.1016/j.corsci.2006.12.002 (2007).

    Article  Google Scholar 

  15. A.S. Román, C.M. Méndez, C.A. Gervasi, R.B. Rebak, and A.E. Ares, J. Mater. Eng. Perform. https://doi.org/10.1007/s11665-020-05344-1 (2020).

    Article  Google Scholar 

  16. W.R. Osório, J.E. Spinelli, I.L. Ferreira, and A. Garcia, Electrochim. Acta. https://doi.org/10.1016/j.electacta.2006.10.004 (2007).

    Article  Google Scholar 

  17. J. Wang, Z. Liu, S. Bai, J. Cao, J. Zhao, and D. Zeng, J. Mater. Eng. Perform. https://doi.org/10.1007/s11665-020-05072-6 (2020).

    Article  Google Scholar 

  18. D.Y. Liu, J.F. Li, Y.C. Lin, P.C. Ma, Y.L. Chen, X.H. Zhang and R.F. Zhang, Acta Metall. Sin. (Engl. Lett.). (2020). https://doi.org/10.1007/s40195-020-01023-1

  19. J. Huang, S. Feng, S. Li, C. Wu, and J. Chen, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2020.158588 (2021).

    Article  Google Scholar 

  20. J.V.D. Araujo, M.X. Milagre, R.O. Ferreira, C.D.C. Machado, A.D.S. Bugarin, I.F. Machado, and I. Costa, Mater. Corros. https://doi.org/10.1002/maco.202011839 (2020).

    Article  Google Scholar 

  21. J. Xu, Y. Deng, and J. Chen, Materials. https://doi.org/10.3390/ma13112628 (2020).

    Article  Google Scholar 

  22. X.Y. Liu, Z.P. Wang, B.G. Fu, L. Long, X.L. Zhang, and H.X. Cui, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2016.05.247 (2016).

    Article  Google Scholar 

  23. S.K. Kairy, B. Rouxel, J. Dumbre, J. Lamb, T.J. Langan, T. Dorin, and N. Birbilis, Corros. Sci. https://doi.org/10.1016/j.corsci.2019.108095 (2019).

    Article  Google Scholar 

  24. J. Fu and K. Cui, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2021.162903 (2022).

    Article  Google Scholar 

  25. G. Chen, T. Zhou, B. Wang, H. Liu, and F. Han, Trans. Nonferrous Met. Soc. China. https://doi.org/10.1016/S1003-6326(16)64086-4 (2016).

    Article  Google Scholar 

  26. Y. Li, Z. Liu, S. Bai, L. Lin, and L. Gao, J. Mater. Eng. Perform. https://doi.org/10.1007/s11665-011-0040-z (2012).

    Article  Google Scholar 

  27. Y.C. Lin, G. Liu, M.S. Chen, J.L. Zhang, Z.G. Chen, Y.Q. Jiang, and J. Li, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2015.11.173 (2016).

    Article  Google Scholar 

  28. X.Y. Liu, M.J. Li, F. Gao, S.X. Liang, X.L. Zhang, and H.X. Cui, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2015.03.174 (2015).

    Article  Google Scholar 

  29. K.S. Ghosh, M. Hilal, and S. Bose, Trans. Nonferrous Met. Soc. China. https://doi.org/10.1016/s1003-6326(13)62856-3 (2013).

    Article  Google Scholar 

  30. Z. Wang, P. Chen, H. Li, B. Fang, R. Song, and Z. Zheng, Corros. Sci. https://doi.org/10.1016/j.corsci.2016.11.013 (2017).

    Article  Google Scholar 

  31. W.N. Shi, H.F. Zhou and X.F. Zhang, Acta Metall. Sin. (Engl. Lett.). (2020). https://doi.org/10.1007/s40195-020-01060-w

  32. V. Guillaumin and G. Mankowski, Corros. Sci. https://doi.org/10.1016/j.corsci.2014.03.001 (1998).

    Article  Google Scholar 

  33. J.A. Moreto, C.E.B. Marino, W.W. Bose Filho, L.A. Rocha and J.C.S. Fernandes, Corros. Sci. (2014). https://doi.org/10.1016/j.corsci.2014.03.001

  34. F. Mansfeld, S. Lin, S. Kim, and H. Shih, J. Electrochem. Soc. https://doi.org/10.1149/1.2086442 (1990).

    Article  Google Scholar 

  35. S. Sivakumar, S.K. Thimmappa, and B.R. Golla, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2018.07.117 (2018).

    Article  Google Scholar 

  36. W.G. Zhao, J.G. Wang, H.L. Zhao, J.Q. Hou, and Q.C. Jiang, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2008.12.095 (2009).

    Article  Google Scholar 

  37. X. Lei, V.L. Nuam, Y. Yuan, Y. Bai, W. Yao, and N. Wang, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2021.159765 (2021).

    Article  Google Scholar 

  38. S.C. Ferreira, L.A. Rocha, E. Ariza, P.D. Sequeira, Y. Watanabe, and J.C.S. Fernandes, Corros. Sci. https://doi.org/10.1016/j.corsci.2011.02.010 (2011).

    Article  Google Scholar 

  39. H. Shi, E.H. Han, and F. Liu, Corros. Sci. https://doi.org/10.1016/j.corsci.2011.03.012 (2011).

    Article  Google Scholar 

  40. R. Arrabal, B. Mingo, A. Pardo, M. Mohedano, E. Matykina, and I. Rodríguez, Corros. Sci. https://doi.org/10.1016/j.corsci.2013.04.023 (2013).

    Article  Google Scholar 

  41. B. Wang, J. Liu, M. Yin, Y. Xiao, X.H. Wang, and J.X. He, Mater. Corros. https://doi.org/10.1002/maco.201408211 (2016).

    Article  Google Scholar 

  42. W. Tian, M. Hu, X. Chen, H. Zhou, Y. Sun, Q. Lu, and M. Wan, Mater. Res. Express. https://doi.org/10.1088/2053-1591/ab80aa (2020).

    Article  Google Scholar 

  43. C. Li, Q. Pan, Y. Shi, Y. Wang, and B. Li, Mater. Des. https://doi.org/10.1016/j.matdes.2013.10.018 (2014).

    Article  Google Scholar 

  44. W.R. Osório, L.C. Peixoto, L.R. Garcia and A. Garcia, Acta Metall. Sin. (Engl. Lett.). (2009). https://doi.org/10.1016/s1006-7191(08)60095-2

  45. Z. Liu, P.H. Chong, P. Skeldon, P.A. Hilton, J.T. Spencer, and B. Quayle, Surf. Coat. Technol. https://doi.org/10.1016/j.surfcoat.2005.07.108 (2006).

    Article  Google Scholar 

  46. H. Zhou, Int. J. Electrochem. Sci. (2017). https://doi.org/10.20964/2017.10.32

  47. Y.A. Meyer, R.S. Bonatti, A.D. Bortolozo, and W.R. Osório, J. Solid State Electrochem. https://doi.org/10.1007/s10008-020-04890-x (2021).

    Article  Google Scholar 

  48. M.F. Wang, D.H. Xiao, B.R. Sun, and W.S. Liu, J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2018.10.290 (2019).

    Article  Google Scholar 

  49. J.V.D. Araujo, R.M.P. da Silva, U. Donatus, C.D.C. Machado and I. Costa, Mater. Res. (Sao Carlos, Braz.). (2020). https://doi.org/10.1590/1980-5373-mr-2020-0161

  50. J. Araujo, R. Silva, M. Milagre, C. Machado and I. Costa, Quim. Nova. (2020). https://doi.org/10.21577/0100-4042.20170598

  51. J.L. Lv and H.Y. Luo, Surf. Coat. Technol. https://doi.org/10.1016/j.surfcoat.2013.07.071 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Education Department of Yunnan Province Fund, China (grant no. KKPS201951007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaolin Zhan or Zulai Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, B., Lu, K., Zhang, F. et al. Effect of Aging Time on the Corrosion Resistance of the As-cast Al-Cu-Mg-Mn Alloy. JOM 74, 3616–3624 (2022). https://doi.org/10.1007/s11837-022-05399-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05399-6

Navigation