Skip to main content
Log in

Effects of Pre-Strain on Exfoliation Corrosion Behavior in Al-Cu-Mg Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Mechanical properties and exfoliation corrosion behavior in Al-Cu-Mg alloy with various pre-strain percents were characterized in this study by means of hardness measurement, optical microscope, transmission electron microscope (TEM), x-ray diffraction (XRD), and electrochemical technique. The hardness of naturally aged alloy was significantly enhanced with increasing the pre-strain percents. The immersion tests and polarization measurements revealed that the pre-straining processing before natural aging reduced the resistance of the alloy to exfoliation corrosion (EXCO), which was mainly attributed to the increase of dislocations density and grain aspect ratio. The decrease of residual tensile stress may only play a minor role in the EXCO resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.C. Williams and E.A. Starke, Jr., Progress in Structural Materials for Aerospace Systems, Acta Mater., 2003, 51, p 5775–5799

    Article  CAS  Google Scholar 

  2. L.S. Kramer, T.P. Blair, S.D. Blough, J.J. Fisher, Jr., and J.R. Pickens, Stress-Corrosion Cracking Susceptibility of Various Product Forms of Aluminum Alloy 2519, J. Mater. Eng. Perform., 2002, 11, p 645–650

    Article  CAS  Google Scholar 

  3. Y. Li, Z. Liu, L. Lin, J. Peng, and A. Ning, Deformation Behavior of an Al-Cu-Mg-Mn-Zr Alloy During Hot Compression, J. Mater. Sci., 2011, 46, p 3708–3715

    Article  CAS  Google Scholar 

  4. S.P. Ringer, K. Hono, T. Sakurai, and I.J. Polmear, Cluster Hardening in an Al-Cu-Mg Alloy, Scripita Mater., 1997, 36(5), p 517–521

    Article  CAS  Google Scholar 

  5. S. Abis, M. Massazzm, P. Mengucci, and G. Riontino, Early Ageing Mechanisms in a High-Copper AlCuMg Alloy, Scripita Mater., 2001, 45, p 685–691

    Article  CAS  Google Scholar 

  6. S.C. Wang and M.J. Starink, Precipitates and Intermetallic Phases in Precipitation Hardening Al-Cu-Mg-(Li) Based Alloys, Int. Mater. Rev., 2005, 50(4), p 193–215

    Article  Google Scholar 

  7. M.J. Robinson and N.C. Jackson, The Influence of Grain Structure and Intergranular Corrosion Rate on Exfoliation and Stress Corrosion Cracking of High Strength Al-Cu-Mg Alloys, Corros. Sci., 1999, 41, p 1013–1028

    Article  CAS  Google Scholar 

  8. J. Wloka, T. Hack, and S. Virtanen, Influence of Temper and Surface Condition on the Exfoliation Behavior of High Strength Al-Zn-Mg-Cu Alloys, Corros. Sci., 2007, 49, p 1437–1449

    Article  CAS  Google Scholar 

  9. X. Liu, G.S. Frankel, B. Zoofan, and S.I. Rokhlin, Effect of Applied Tensile Stress on Intergranular Corrosion of AA2024-T3, Corros. Sci., 2004, 46, p 405–425

    Article  CAS  Google Scholar 

  10. X. Liu and G.S. Frankel, Effects of Compressive Stress on Localized Corrosion in AA2024-T3, Corros. Sci., 2006, 48, p 3309–3329

    Article  CAS  Google Scholar 

  11. D. Wang, D.R. Ni, and Z.Y. Ma, Effect of Pre-Strain and Two-Step Aging on Microstructure and Stress Corrosion Cracking of 7050 Alloy, Mater. Sci. Eng. A., 2008, 494, p 360–366

    Article  Google Scholar 

  12. D. Yi, S. Yang, B. Deng, and M. Zhou, Effect of Pre-Strain on Fatigue Crack Growth of 2E12 Aluminum Alloy, Trans. Nonferr. Met. Soc. China, 2007, 17, p 141–147

    Google Scholar 

  13. J. Schijce, The Effect of Pre-Strain on Fatigue Crack Growth and Crack Closure, Eng. Fract. Mech., 1976, 8, p 575–581

    Article  Google Scholar 

  14. ASTM Standard G34-01, “Standard Test Method for Exfoliation Corrosion Susceptibility in 2XXX and 7XXX Series Al Alloys”, 2001

  15. L.D. Leshchiner, V.S. Sandler, and K.A. Sakharov, Effect of Cold Deformation on the Structure and Properties of Aluminum Alloy 1441 Sheets, Met. Sci. Heat Treat., 1995, 37, p 62–64

    Article  Google Scholar 

  16. A. Charai, T. Walther, C. Alfonso, A.M. Zahra, and C.Y. Zahra, Coexistence of Clusters, GPB Zones, S″-, S′- and S-Phases in an Al ± 0.9%Cu ± 1.4%Mg Alloy, Acta Mater., 2000, 48, p 2751–2764

    Article  CAS  Google Scholar 

  17. D. Wang and Z.Y. Ma, Effect of Pre-Strain on Microstructure and Stress Corrosion Cracking of Over-Aged 7050 Aluminum Alloy, J. Alloys Compd., 2009, 469, p 445–450

    Article  CAS  Google Scholar 

  18. R. Gou, Y. Zhang, X. Xu, L. Sun, and Y. Yang, Residual Stress Measurement of New and In-Service X70 Pipelines by X-Ray Diffraction Method, NDT&E Int., 2011, 44, p 387–393

    Article  CAS  Google Scholar 

  19. G. Itoh, K. Koyama, and M. Kanno, Evidence for the Transport of Impurity Hydrogen with Gliding Dislocation in Aluminium Alloy, Scripta Mater., 1996, 35(6), p 695–698

    Article  CAS  Google Scholar 

  20. H. Kamoutsi, G.H. Haidemenopoulos, V. Bontozoglou, and S. Pantelakis, Corrosion-Induced Hydrogen Embrittlement in Aluminum Alloy 2024, Corros. Sci., 2006, 48, p 1209–1224

    Article  CAS  Google Scholar 

  21. J. Albrecht, I.M. Bernstein, and A.W. Thompson, Evidence for Dislocation Transport of Hydrogen in Aluminum, Metall. Trans. A, 1982, 13A, p 811–820

    Google Scholar 

  22. M. Talianker and B. Cina, Retrogression and Reaging and the Role of Dislocations in the Stress Corrosion of 7000-Type Aluminum Alloys, Metall. Trans. A, 1989, 20A, p 2087–2092

    CAS  Google Scholar 

  23. D. McNaughtan, M. Worsfold, and M.J. Robinson, Corrosion Product Force Measurements in the Study of Exfoliation and Stress Corrosion Cracking in High Strength Aluminium Alloys, Corros. Sci., 2003, 45, p 2377–2389

    Article  CAS  Google Scholar 

  24. L. Lin, Z. Liu, Y. Li, X. Han, and X. Chen, Effects of Severe Cold Rolling on Exfoliation Corrosion Behavior of Al-Zn-Mg-Cu-Cr Alloy, J. Mater. Eng. Perform., 2011, doi:10.1007/s11665-011-9978-0

  25. M.J. Robinson, Mathematical Modelling of Exfoliation Corrosion in High Strength Aluminum Alloys, Corros. Sci., 1982, 22, p 775–790

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the financial support of the National Key Fundamental Research Project of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Liu, Z., Bai, S. et al. Effects of Pre-Strain on Exfoliation Corrosion Behavior in Al-Cu-Mg Alloy. J. of Materi Eng and Perform 21, 1479–1484 (2012). https://doi.org/10.1007/s11665-011-0040-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-011-0040-z

Keywords

Navigation