Skip to main content
Log in

In Situ Deformation of First Tarsometatarsal Arthrodesis Implants with Digital Image Correlation: A Cadaveric Study

  • Interactions between Biomaterials and Biological Tissues and Cells
  • Published:
JOM Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Hallux valgus can be addressed through realignment and arthrodesis of the first tarsometatarsal joint. This study aimed to characterize the biomechanical performance of two implant constructs in a matched-pair cadaveric model. Simulated first tarsometatarsal arthrodesis utilized either a lag screw plus locking plate or nitinol staple construct placed in 90-degree configuration. In situ digital image correlation was performed on fresh-frozen cadaveric specimens to characterize 1st tarsometatarsal gapping during cyclic loading. Interfacial characteristics were analyzed with gap displacement allowed by the implant following cyclical loading. The locking plate and nitinol staple constructs gapped 1.367 ± 0.917 mm and 2.116 ± 0.8934 mm, respectively, under 50 N. Removing load, the locking plate and nitinol staple constructs measured 0.3898 ± 0.3787 mm and 0.673 ± 0.5467 mm of residual gapping, respectively. In our cadaver model, both constructs maintained compression and residual stability of the first tarsometatarsal joint gap under 3 mm. Contrary to our synthetic bone study, the locking plate constructs provided statistically superior performance during loading compared to nitinol staples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.J. Coughlin, C.P. Jones, R. Viladot, P. Glanó, B.R. Grebing, M.J. Kennedy, and F. Alvarez, Foot Ankle Int. 25, 537. https://doi.org/10.1177/107110070402500805 (2004).

    Article  Google Scholar 

  2. J.K. Ellington, M.S. Myerson, J.C. Coetzee, and R.M. Stone, Foot Ankle Int. 32, 674. https://doi.org/10.3113/FAI.2011.0674 (2011).

    Article  Google Scholar 

  3. J.S. Kim, H.K. Cho, K.W. Young, J. Kim, and K.T. Lee, Clin. Orthop. Surg. 9, 514. https://doi.org/10.4055/cios.2017.9.4.514 (2017).

    Article  Google Scholar 

  4. E. So, B. Van Dyke, M.R. McGann, R. Brandao, D. Larson, and C.F. Hyer, Foot Ankle Surg. 58, 62. https://doi.org/10.1053/j.jfas.2018.08.010 (2019).

    Article  Google Scholar 

  5. S. Nix, M. Smith, and B. Vicenzino, Foot Ankle Res. 3, 1. https://doi.org/10.1186/1757-1146-3-21 (2010).

    Article  Google Scholar 

  6. P.E. Scranton, J.C. Coetzee, and D. Carreira, Foot Ankle Int. 30, 341. https://doi.org/10.3113/fai.2009.0341 (2009).

    Article  Google Scholar 

  7. P. Sztefek, M. Vanleene, R. Olsson, R. Collinson, A.A. Pitsillides, and S. Shefelbine, J. Biomech. 43, 599. https://doi.org/10.1016/j.jbiomech.2009.10.042 (2010).

    Article  Google Scholar 

  8. M.A. Sutton, J.J. Orteu, and H.W. Schreier, Image Correlation for Shape Motion and Deformation Measurements (Springer, Boston, 2009), pp 1–37.

    Google Scholar 

  9. R. Ghorbani, F. Matta, and M. Sutton, Exp Mech. 55, 227. https://doi.org/10.1007/s11340-014-9906-y (2014).

    Article  Google Scholar 

  10. M.A. Sutton, J. Yan, X. Deng, C.S. Cheng, and P.D. Zavattieri, Opt. Eng. 46, 1. https://doi.org/10.1117/1.2741279 (2007).

    Article  Google Scholar 

  11. J.D. Helm, S.R. McNeil, and M.A. Sutton, Opt. Eng. 35, 1911. https://doi.org/10.1117/1.600624 (1996).

    Article  Google Scholar 

  12. M.N. Rossol, J.H. Shaw, H. Bale, R.O. Ritchie, D.B. Marshall, and F.W. Zok, J. Am. Ceram. Soc. 96, 2362. https://doi.org/10.1111/jace.12468 (2013).

    Article  Google Scholar 

  13. V.C. Shen, C.H. Bumgardner, L. Actis, J. Ritz, J. Park, and X. Li, Clin. Biomech. 71, 29. https://doi.org/10.1016/j.clinbiomech.2019.10.011 (2020).

    Article  Google Scholar 

  14. J.M. Cottom, and J.S. Baker, Foot Ankle Spec. 10, 227. https://doi.org/10.1177/1938640016676341 (2017).

    Article  Google Scholar 

  15. E.A. Friis, Mechanical Testing of Orthopaedic Implants (Woodhead Publishing, Cambridge, 2016), pp 231–253.

    Google Scholar 

  16. K. Klos, B. Gueorguiev, T. Mückley, R. Frober, G.O. Hofmann, K. Schwieger, and M. Windolf, Foot Ankle Int. 31, 158. https://doi.org/10.3113/fai.2010.0158 (2010).

    Article  Google Scholar 

  17. B. Campbell, P. Schimoler, S. Belagaje, M.C. Miller, and S.F. Conti, J. Orthop Surg. Res. 12, 1. https://doi.org/10.1186/s13018-017-0525-z (2017).

    Article  Google Scholar 

  18. A.T. Scott, J.K. DeOrio, H.E. Montijo, and R.R. Glisson, Clin. Biomech. 25, 271. https://doi.org/10.1016/j.clinbiomech.2009.12.006 (2010).

    Article  Google Scholar 

  19. A. Aiyer, N.A. Russell, M.H. Pelletier, M. Myerson, and W.R. Walsh, Foot Ankle Spec. 9, 232. https://doi.org/10.1177/1938640015620655 (2015).

    Article  Google Scholar 

  20. D. Drummond, T. Motley, V. Kosmopoulos, and J. Ernst, Foot Ankle Surg. 57, 466. https://doi.org/10.1053/j.jfas.2017.10.025 (2018).

    Article  Google Scholar 

  21. O.N. Schipper, S.E. Ford, P.W. Moody, B. Van Doren, and J.K. Ellington, Foot Ankle Int. 39, 172. https://doi.org/10.1177/1071100717737740 (2018).

    Article  Google Scholar 

  22. C.C. Dock, K.L. Freeman, J.C. Coetzee, R.S. Mcgaver, and M.R. Giveans, Foot Ankle Orthop. 5, 1. https://doi.org/10.1177/2473011420944904 (2020).

    Article  Google Scholar 

  23. E.J. Luger, M. Nissan, A. Karpf, E.L. Steinberg, and S. Dekel, J. Bone Jt. Surg. 81, 199. https://doi.org/10.1302/0301-620x.81b2.9353 (1999).

    Article  Google Scholar 

  24. Q.J. Hoon, M.H. Pelletier, C. Christou, K.A. Johnson, and W.R. Walsh, J. Exp. Orthop. 3, 19. https://doi.org/10.1186/s40634-016-0055-3 (2016).

    Article  Google Scholar 

  25. T.L. Bredbenner, and R.H. Haug, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 90, 574. https://doi.org/10.1067/moe.2000.111025 (2000).

    Article  Google Scholar 

  26. F. O’Neill, F. Condon, T. McGloughlin, B. Lenehan, C. Coffey, and M. Walsh, Bone Jt. Res. 1, 50. https://doi.org/10.1302/2046-3758.14.2000044 (2012).

    Article  Google Scholar 

  27. J. Kraus, M.J. Ziegele, M. Wang, and B. Law, Foot Ankle Orthop. 6, 1. https://doi.org/10.1177/24730114211026934 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank BioMedical Enterprises for providing the implant hardware. We would also like to acknowledge MedCure as well as Dr. David Moyer and Kerrie May-Nikstaitis of Surgical Skills Training Center and Gross Anatomy Lab at the University of Virginia for their assistance.

Funding

Funding was provide by DePuy Synthes Spine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Li.

Ethics declarations

Conflict of interest

Dr. Park is a paid speaker/consultant for DePuy Synthes and performed the surgical implantation of all arthrodesis constructs. He was not involved in the testing or characterization of the constructs.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, V.C., Bumgardner, C., Actis, L. et al. In Situ Deformation of First Tarsometatarsal Arthrodesis Implants with Digital Image Correlation: A Cadaveric Study. JOM 74, 3357–3366 (2022). https://doi.org/10.1007/s11837-022-05391-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05391-0

Navigation