Skip to main content
Log in

Effect of Master Alloys on Synthesis and Mechanical Properties of Ti-6Al-4V Alloy Produced by Elemental Powder Blends

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effects of different types of initial titanium powder and master alloy (MA) powder with different particle size distributions and pressing pressures on the mechanical properties of as-sintered samples were studied. Titanium hydride-based alloy could obtain better green density, sintered density, densification, element homogenization and mechanical properties. The alloy synthesized from single fine MA had better densification (low porosity) and element homogenization; therefore, it had better mechanical properties than the other alloys. Sintering performance was affected by specific surface and contact area and finer powder could obtain higher sintered density; hence, the combination of 0–38 μm titanium hydride powder and 0–26 μm single MA powder (60Al40V) obtained the highest sintered density (99.8%). Oxygen content seriously affected the mechanical properties of the as-sintered samples. The best combination of mechanical properties was obtained by selecting the appropriate powder combination and conditions. Optimal mechanical properties were obtained through the combination of 0–125 μm titanium hydride powder and 0–26 μm single MA under 600 MPa pressure. This alloy had a tensile strength of 999.9 MPa, a yield strength of 906.0 MPa, elongation of 17.83% and an area reduction of 29.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Peters, In Vortrag bei "Euromat'95" am 26.09.1995, Padua, Italien, (1995).

  2. T. GroGler, E. Zeiler, A. Franz, O. Plewa, S.M. Rosiwal, and R.F. Singer, Surf. Coat. Technol. 112, 129 (1999).

    Article  Google Scholar 

  3. R.R. Boyer, Mater. Sci. Eng., A 213, 103 (1996).

    Article  Google Scholar 

  4. I.V. Gorynin, Mater. Sci. Eng., A 263, 112 (1999).

    Article  Google Scholar 

  5. O.M. Ivasyshyn, and A.V. Aleksandrov, Mater. Sci. 44, 311 (2008).

    Article  Google Scholar 

  6. F.G. Arcella, and F.H. Froes, JOM 52, 28 (2000).

    Article  Google Scholar 

  7. K.H. Heo, Mater. Trans. 54, 119 (2013).

    Article  Google Scholar 

  8. A. Squillace, U. Prisco, S. Ciliberto, and A. Astarita, J. Mater. Process. Technol. 212, 427 (2012).

    Article  Google Scholar 

  9. D.-H. He, D.-S. Li, X.-Q. Li, and C.-H. Jin, Trans. Nonferr. Metals Soc. China 20, 2350 (2010).

    Article  Google Scholar 

  10. S.P. Lynch, B. Hole, and T. Pasang, Eng. Fail. Anal. 2, 257 (1995).

    Article  Google Scholar 

  11. H. Mizukami, Y. Shirai, A. Kawakami, and A. Mitchell, ISIJ Int. 60, 2455 (2020).

    Article  Google Scholar 

  12. F. Li, X. Xue, T. Jia, W. Dang, K. Zhao, and Y. Tang, J. Mech. Behav. Biomed. Mater. 101, 103424 (2020).

    Article  Google Scholar 

  13. Z.-D. Lü, C.-J. Zhang, Z.-X. Du, J.-C. Han, S.-Z. Zhang, F. Yang, and Y.-Y. Chen, Rare Met. 38, 336 (2019).

    Article  Google Scholar 

  14. K.S. Senkevich, Russian J. Non-Ferrous Metals 60, 101 (2019).

    Article  Google Scholar 

  15. F.H. Froes, S.J. Mashl, J.C. Hebeisen, V.S. Moxson, and V.A. Duz, Jom 56, 46 (2004).

    Article  Google Scholar 

  16. M. Qian, and F.H. Froes, Titanium Powder Metallurgy (Elsevier, Netherlands, 2015), pp 1–32.

    Google Scholar 

  17. M. Qian, and F.H. Froes, Titanium Powder Metallurgy (Elsevier, Netherlands, 2015), pp 117–148.

    Google Scholar 

  18. O.M. Ivasishin, D.G. Sawakin, V.S. Moxson, K.A. Bondareval, and F.H. Froes, Mater. Technol. 17, 20 (2002).

    Article  Google Scholar 

  19. O.M. Ivasishin, D.G. Savvakin, I.S. Bielov, V.S. Moxson, V.A. Duz, R. Davies, and C. Lavender, Mater. Sci. Technol. Assoc. Iron Steel Technol. 4, 3 (2005).

    Google Scholar 

  20. F.H. Froes, Adv. Mater. Process. 170, 1 (2012).

    Google Scholar 

  21. M. Qian, and F.H. Froes, Titanium Powder Metallurgy (Elsevier, Netherlands, 2015), pp 201–218.

    Book  Google Scholar 

  22. C. Leyens and M. Peters, Titanium and Titanium Alloys, (Titanium and Titanium Alloys - Fundamentals and Applications, 2003).

  23. L. Bolzoni, P.G. Esteban, E.M. Ruiz-Navas, and E. Gordo, Powder Metall. 54, 543 (2011).

    Article  Google Scholar 

  24. F.H. Froes, and D. Eylon, Metall. Rev. 35, 162 (2013).

    Article  Google Scholar 

  25. O. Ivasishin and V. Moxson, Titanium powder metallurgy, (Elsevier, 2015), pp 117-148.

  26. O.M. Ivasishin, V.M. Anokhin, A.N. Demidik, and D.G. Savvakin, Key Eng. Mater. 188, 55 (2000).

    Article  Google Scholar 

  27. H.J. Liu, L. Zhou, P. Liu, and Q.W. Liu, Int. J. Hydrog. Energy 34, 9596 (2009).

    Article  Google Scholar 

  28. S.J. Gerdemann and D.E. Alman, 6th Global Innovations Symposium on Materials Processing, 901681 (2005). https://www.osti.gov/biblio/901681

  29. D.H. Savvakin, M.M. Humenyak, M.V. Matviichuk, and O.H. Molyar, Mater. Sci. 47, 651 (2012).

    Article  Google Scholar 

  30. L. Yu, Y. Li, Z. Deng, and D. Li, Xiyou Jinshu Cailiao yu Gongcheng (Rare Metal Materials and Engineering) 34, 1622 (2005).

    Google Scholar 

  31. Y. Yan, G.L. Nash, and P. Nash, Int. J. Fatigue 55, 81. https://doi.org/10.1016/j.ijfatigue.2013.05.015 (2013).

    Article  Google Scholar 

  32. P. Kumar, and K. Chandran, Scripta Mater. 165, 1 (2019).

    Article  Google Scholar 

  33. T. Fujita, A. Ogawa, C. Ouchi, and H. Tajima, Mater. Sci. 213, 148 (1996).

    Google Scholar 

  34. J.D. Paramore, Z.Z. Fang, M. Dunstan, P. Sun, and B.G. Butler, Sci. Rep. 7, 41444. https://doi.org/10.1038/srep41444 (2017).

    Article  Google Scholar 

  35. O.M. Ivasishin, D.G. Savvakin, F.H.S. Froes, and K.A. Bondareva, Powder Metall Met Ceram 41, 382 (2002).

    Article  Google Scholar 

  36. O.M. Ivasishin, D. Eylon, V.I. Bondarchuk, and D.G. Savvakin, Defect Diffus Forum 277, 177 (2008).

    Article  Google Scholar 

  37. Y. Chong, M. Poschmann, R. Zhang, S. Zhao, M.S. Hooshmand, E. Rothchild, D.L. Olmsted, J.W. Morris, D.C. Chrzan, and M. Asta, Sci Adv 6, 4060 (2020).

    Article  Google Scholar 

  38. M. Niinomi, and M. Nakai, Mater. Sci. Forum 706, 135 (2012).

    Article  Google Scholar 

  39. S. Dong, B. Wang, Y. Song, G. Ma, H. Xu, D. Savvakin, and O. Ivasishin, Adv. Mater. Sci. Eng. 9999541, 1. https://doi.org/10.1155/2021/9999541 (2021).

    Article  Google Scholar 

  40. O.M. Ivasishin, and D.G. Savvakin, Key Eng. Mater. 436, 113 (2010).

    Article  Google Scholar 

  41. D.G. Savvakin, A. Carman, O.M. Ivasishin, M.V. Matviychuk, A.A. Gazder, and E.V. Pereloma, Metall. and Mater. Trans. A. 43, 716 (2012).

    Article  Google Scholar 

  42. X.X. Li, C. Yang, Z. Liu, F. Wang, and O.M. Ivasishin, Metall. and Mater. Trans. B. 50, 2843 (2019).

    Article  Google Scholar 

  43. A. Tc, A. Cy, A. Zl, A. Hwm, C. Lmk, A. Zw, A. Wwz, B. Ddl, B. Nl, and B. Yyla, J. Alloy. Compd. 873, 159792. https://doi.org/10.1016/j.jallcom.2021.159792 (2021).

    Article  Google Scholar 

  44. W.A. Hao, and B. Gf, Prog. Mater Sci. 113, 100675. https://doi.org/10.1016/j.pmatsci.2020.100675 (2020).

    Article  Google Scholar 

  45. S. Wang, L. Huang, S. Jiang, R. Zhang, and L. Geng, Mater. Sci. Eng., A 804, 140783 (2021).

    Article  Google Scholar 

  46. H. Wu, M. Huang, X. Li, Y. Xia, and G. Fan, Int. J. Plast 141, 102998 (2021).

    Article  Google Scholar 

  47. S. Dong, G. Ma, P. Lei, T. Cheng, and O. Ivasishin, Adv. Powder Technol. 32, 2300 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the support of College of Materials Science and Engineering of Jilin University in China, International Center of Future Science of Jilin University in China, G.V. Kurdyumov Institute for Metal Physics in Ukraine.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tuo Cheng or Xuan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, S., Cheng, T., Wang, X. et al. Effect of Master Alloys on Synthesis and Mechanical Properties of Ti-6Al-4V Alloy Produced by Elemental Powder Blends. JOM 74, 4389–4401 (2022). https://doi.org/10.1007/s11837-022-05386-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05386-x

Navigation