Skip to main content
Log in

Microstructure and Mechanical Properties of In-Situ B4C-(TiZrHfNbTa) B2 Composite by Reactive Spark Plasma Sintering

  • Recent Advances in Multicomponent Alloys and Ceramics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

B4C-45vol.% (TiZrHfNbTa) B2 composite was prepared by in-situ reactive spark plasma sintering at 2000°C using powders of transition metal carbides and amorphous boron as raw materials. The composite reached a relative density of over 97% Within 6 min. The simultaneously generated B4C and (TiZrHfNbTa) B2 phases had homogeneous microstructures with particle sizes ~ 1 μm, and Nb segregations in (TiZrHfNbTa) B2 grains were detected. The composite obtained a high three-point bending strength of 422 MPa, a Vickers hardness of 20.9 GPa and a fracture toughness of 5.48 MPa m1/2, respectively. The fine grain and solid solution effects are the main reasons for the improved properties. The crack deflection, branching, and bridging mechanisms observed are also helpful for an improved fracture toughness of the composite. This work provides a fast, convenient method of preparing novel B4C high-entropy boride composite ceramics with enhanced properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig. 4
Fig 5
Fig 6

Similar content being viewed by others

References

  1. F. Thévenot, J. Eur. Ceram. Soc. 6, 205. (1990).

    Article  Google Scholar 

  2. A.K. Suri, C. Subramanian, J.K. Sonber, and T.S.R.C. Murthy, Int. Mater. Rev. 55, 4. (2010).

    Article  Google Scholar 

  3. W. Zhang, S. Yamashita, and H. Kita, Adv. Appl. Ceram. 118, 222. (2019).

    Article  Google Scholar 

  4. Z. Zhang, X. Du, Z. Li, W. Wang, J. Zhang, and Z. Fu, J. Eur. Ceram. Soc. 34, 2153. (2014).

    Article  Google Scholar 

  5. L.S. Sigl, J. Eur. Ceram. Soc. 18, 1521. (1998).

    Article  Google Scholar 

  6. Yu.G. Tkachenko, V.T. Varchenko, V.F. Britun, and D.Z. Yurchenko, Powder Metall. Met. Ceram. 44, 245. (2005).

    Article  Google Scholar 

  7. Y. Xiong, X. Du, M. Xiang, H. Wang, W. Wang, and Z. Fu, J. Eur. Ceram. Soc. 38, 4167. (2018).

    Article  Google Scholar 

  8. Z. Liu, D. Wang, J. Li, Q. Huang, and S. Ran, Scr. Mater. 135, 15. (2017).

    Article  Google Scholar 

  9. X. Cheng, R. He, Z. Qu, S. Ai, and D. Fang, Ceram. Int. 41, 14574. (2015).

    Article  Google Scholar 

  10. J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M.C. Quinn, W.M. Mellor, N. Zhou, K. Vecchio, and J. Luo, Sci. Rep. 6, 37946. (2016).

    Article  Google Scholar 

  11. C. Oses, C. Toher, and S. Curtarolo, Nat Rev Mater 5, 295. (2020).

    Article  Google Scholar 

  12. R.-Z. Zhang and M.J. Reece, J. Mater. Chem. A 7, 22148. (2019).

    Article  Google Scholar 

  13. Y. Zhang, S.-K. Sun, W. Zhang, Y. You, W.-M. Guo, Z.-W. Chen, J.-H. Yuan, and H.-T. Lin, Ceram. Int. 46, 14299. (2020).

    Article  Google Scholar 

  14. D. Hedman, A.C. Feltrin, Y. Miyamoto, and F. Akhtar, J. Mater. Sci. 57, 422. (2022).

    Article  Google Scholar 

  15. H. Zhang, D. Hedman, P. Feng, G. Han, and F. Akhtar, Dalton Trans. 48, 5161. (2019).

    Article  Google Scholar 

  16. H. Zhang and F. Akhtar, Entropy 21, 474. (2019).

    Article  Google Scholar 

  17. H. Xiang, Y. Xing, F. Dai, H. Wang, L. Su, L. Miao, G. Zhang, Y. Wang, X. Qi, L. Yao, H. Wang, B. Zhao, J. Li, and Y. Zhou, J. Adv. Ceram. 10, 385. (2021).

    Article  Google Scholar 

  18. S.-K. Sun, G.-J. Zhang, W.-W. Wu, J.-X. Liu, T. Suzuki, and Y. Sakka, Scripta Mater 69, 139. (2013).

    Article  Google Scholar 

  19. M. Qin, J. Gild, H. Wang, T. Harrington, K.S. Vecchio, and J. Luo, J. Eur. Ceram. Soc. 40, 4348. (2020).

    Article  Google Scholar 

  20. J. Gu, J. Zou, P. Ma, H. Wang, J. Zhang, W. Wang, and Z. Fu, J. Mater. Sci. Technol. 35, 2840. (2019).

    Article  Google Scholar 

  21. A.G. Evans and E.A. Charles, J. Am. Ceram. Soc. 59, 371. (1976).

    Article  Google Scholar 

  22. Y. Zhang, D.-W. Tan, W.-M. Guo, L.-X. Wu, S.-K. Sun, Y. You, H.-T. Lin, and C.-Y. Wang, J. Am. Ceram. Soc. 103, 103. (2020).

    Article  Google Scholar 

  23. R.M. White and E.C. Dickey, J. Eur. Ceram. Soc. 34, 2043. (2014).

    Article  Google Scholar 

  24. Q. Yang, C. Hwang, A.U. Khan, V. Domnich, E.D. Gronske, and R.A. Haber, Mater. Charact. 155, 109797. (2019).

    Article  Google Scholar 

  25. R. Tu, N. Li, Q. Li, S. Zhang, L. Zhang, and T. Goto, J. Eur. Ceram. Soc. 36, 3929. (2016).

    Article  Google Scholar 

  26. D. Demirskyi and Y. Sakka, J. Ceram. Soc. Jpn. 123, 33. (2015).

    Article  Google Scholar 

  27. D. Demirskyi, Y. Sakka, and O. Vasylkiv, J. Am. Ceram. Soc. 99, 2436. (2016).

    Article  Google Scholar 

  28. L. Feng, W.G. Fahrenholtz, G.E. Hilmas, and F. Monteverde, J. Eur. Ceram. Soc. 41, 92. (2021).

    Article  Google Scholar 

  29. Y. Zhou, H. Xiang, Z. Feng, and Z. Li, J. Mater. Sci. Technol. 31, 285. (2015).

    Article  Google Scholar 

  30. H. Li and R.C. Bradt, J. Mater. Sci. 28, 917. (1993).

    Article  Google Scholar 

  31. J.-X. Liu, X.-Q. Shen, Y. Wu, F. Li, Y. Liang, and G.-J. Zhang, J. Adv. Ceram. 9, 503. (2020).

    Article  Google Scholar 

  32. Y. Zhang, S.-K. Sun, W.-M. Guo, L. Xu, W. Zhang, and H.-T. Lin, J. Adv. Ceram. 10, 173. (2021).

    Article  Google Scholar 

  33. J. Gu, J. Zou, S.-K. Sun, H. Wang, S.-Y. Yu, J. Zhang, W. Wang, and Z. Fu, Sci. China Mater. 62, 1898. (2019).

    Article  Google Scholar 

  34. H. Chen, H. Xiang, F.-Z. Dai, J. Liu, and Y. Zhou, J. Mater. Sci. Technol. 35, 2404. (2019).

    Article  Google Scholar 

  35. F. Monteverde and F. Saraga, J. Alloy Compd. 824, 153930. (2020).

    Article  Google Scholar 

  36. K.E. Spear, J. Less Common. Met. 47, 195. (1976).

    Article  Google Scholar 

  37. M. Qin, J. Gild, C. Hu, H. Wang, M.S.B. Hoque, J.L. Braun, T.J. Harrington, P.E. Hopkins, K.S. Vecchio, and J. Luo, J. Eur. Ceram. Soc. 40, 5037. (2020).

    Article  Google Scholar 

  38. X.-Q. Shen, J.-X. Liu, F. Li, and G.-J. Zhang, Ceram. Int. 45, 24508. (2019).

    Article  Google Scholar 

  39. H. Engqvist, S. Jacobson, and N. Axén, Wear 252, 384. (2002).

    Article  Google Scholar 

  40. X. Zhang, Z. Zhang, R. Wen, G. Wang, X. Zhang, J. Mu, H. Che, and W. Wang, Ceram. Int. 44, 2615. (2018).

    Article  Google Scholar 

  41. D. Demirskyi, T.S. Suzuki, K. Yoshimi, and O. Vasylkiv, J. Ceram. Soc. Jpn. 128, 977. (2020).

    Article  Google Scholar 

  42. H.J. Klam, H. Hahn, and H. Gleiter, Acta Metall. 35, 2101. (1987).

    Article  Google Scholar 

  43. G.V. Tsagareishvili, T.G. Nakashidze, J.S. Jobava, G.P. Lomidze, D.E. Khulelidze, D.S. Tsagareishvili, and O.A. Tsagareishvili, J. Less Common. Met. 117, 159. (1986).

    Article  Google Scholar 

  44. W.S. Rubink, V. Ageh, H. Lide, N.A. Ley, M.L. Young, D.T. Casem, E.J. Faierson, and T.W. Scharf, J. Eur. Ceram. Soc. 41, 3321. (2021).

    Article  Google Scholar 

  45. L. Feng, F. Monteverde, W.G. Fahrenholtz, and G.E. Hilmas, Scr. Mater. 199, 113855. (2021).

    Article  Google Scholar 

  46. Y. Zhang, Z.-B. Jiang, S.-K. Sun, W.-M. Guo, Q.-S. Chen, J.-X. Qiu, K. Plucknett, and H.-T. Lin, J. Eur. Ceram. Soc. 39, 3920. (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52002003, 52072003 and U1860102), Natural Science Foundation of Anhui Province, China (No. 2008085QE196), and Open Fund of Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education (No. GFST2020KF09).

Funding

National Natural Science Foundation of China, 52002003, Dong Wang, 52072003, Songlin.Ran, U1860102, Songlin Ran, Natural Science Foundation of Anhui Province, 2008085QE196, Dong Wang, Open fund of Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education, GFST2020KF09, Dong Wang

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Wang or Songlin Ran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Xu, K., Li, Q. et al. Microstructure and Mechanical Properties of In-Situ B4C-(TiZrHfNbTa) B2 Composite by Reactive Spark Plasma Sintering. JOM 74, 4129–4137 (2022). https://doi.org/10.1007/s11837-022-05377-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05377-y

Navigation