Skip to main content
Log in

Mechanical Property Evaluation of CuNb Composites Manufactured with High-Pressure Torsion

  • Properties and Evolution of Defects and Interfaces
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Copper is under consideration as the optimum material for both high heat flux applications and high-frequency pulsed magnets. One challenge is that copper has low strength which is problematic to deployment in these applications. One solution is to alloy copper with body center cubic (BCC) elements to improve its mechanical properties. However, the limited solubility of the BCC elements in copper requires high deformation processes to be used in order to manufacture these 3D composites. In this work high-energy ball milling combined with high-pressure torsion was used to manufacture 3D Cu-Nb composites. After the consolidation, the mechanical properties of the composites were measured using micro-and nano-hardness testing at room and elevated temperatures. The results indicated that after 10 turns during the high-pressure torsion consolidation, the mechanical properties of the composites were completely saturated, displaying uniform properties across the manufactured disk. Performing the high-pressure torsion at elevated temperature further improved the consolidation of the disk. The high-temperature nanoindentation also indicated a change in the deformation mechanism between 200°C and 500°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Li., S. Zinkle, Compr. Nucl. Mater., 43, 667–690 (2012)

  2. A. R. Yavari, P. J. Desré, and T. Benameur, Phys. Rev. Lett. 68(14), 2235 (1992)

    Article  Google Scholar 

  3. A. Bachmaier, M. Kerber, D. Setman, and R. Pippan, Acta Mater. 60(3), 860–871 (2012)

    Article  Google Scholar 

  4. A. Chbihi, X. Sauvage, and D. Blavette, Acta Mater. 60, 4575–4575 (2012)

    Article  Google Scholar 

  5. K. Darling, A. Roberts, Y. Mishin, S. Mathaudhu, and L. Kecskes, J. Alloys Comp. 573, 142–150 (2013)

    Article  Google Scholar 

  6. S. Eghtesadi, N. Parvin, M. Rezaee, and M. Salari, J. Alloys Comp. 473, 557–559 (2009)

    Article  Google Scholar 

  7. S. Mula, H. Bahmanpour, S. Mal, P. Kang, M. Atwater, W. Jian, R. Scattergood, and C. Koch, Mater. Sci. Eng. A 539, 330–336 (2012)

    Article  Google Scholar 

  8. R.-S. Lei, M.-P. Wang, M.-X. Guo, Z. Li, and Q.-J. Dong, Trans. Nonferrous Met. Soc. China 17, 603–607 (2007)

    Google Scholar 

  9. E. Botcharova, J. Freudenberger, and L. Schultz, J. Alloys Comp. 365, 157–163 (2004)

    Article  Google Scholar 

  10. M. Abad, S. Parker, D. Kiener, M.-M. Primorac, and P. Hosemann, J. Alloys Comp. 630, 117–125 (2015)

    Article  Google Scholar 

  11. E. Botcharova, J. Freudenberger, and L. Schultz, Acta Mater. 54, 3333–3341 (2006)

    Article  Google Scholar 

  12. E. Botcharova, M. Heilmaier, J. Freudenberger, G. Drew, D. Kudashow, U. Martin, and L. Schultz, J. Alloys Comp. 351, 119–125 (2003)

    Article  Google Scholar 

  13. M. Morris, and D. Morris, Mater. Sci. Eng. A 111, 115–127 (1989)

    Article  Google Scholar 

  14. J. Beach, M. Wang, P. Bellon, S. Dillon, Y. Ivanisenko, T. Boll, and R. Averback, Acta Mater. 140, 217–223 (2017)

    Article  Google Scholar 

  15. C. Howard, D. Frazer, A. Lupinacci, S. Parker, R. Valiev, C. Shin, B. Choi, and P. Hosemann, Mater. Sci. Eng. A 649, 104–113 (2016)

    Article  Google Scholar 

  16. M. Meyers, A. Mishra, and D. Benson, Prog. Mater. Sci. 51, 427–556 (2006)

    Article  Google Scholar 

  17. Y. Zhu, T. Lowe, and T. Langdon, Scr. Mater. 51, 825–830 (2004)

    Article  Google Scholar 

  18. K. Ma, Y. Zheng, S. Dasari, D. Zhang, H.L. Frazer, and R. Banerjee, MRS Bull. 46, 250–257 (2021)

    Article  Google Scholar 

  19. K. Hattar, M. Demkowicz, A. Misra, I. Robertson, and R. Hoagland, Scripta Mater. 58, 514–544 (2008)

    Article  Google Scholar 

  20. A. Misra, M. Demkowicz, X. Zhang, and R. Hoagland, JOM 59, 62–65 (2007)

    Article  Google Scholar 

  21. M. J. Demkowicz, R. G. Hoagland, and J. P. Hirth, Phys. Rev. Lett 100(13), 136102 (2008)

    Article  Google Scholar 

  22. M.-M. Primorac, M. Abad, P. Hosemann, M. Kreuzeder, V. Maier, and D. Kiener, Mater. Sci. Eng. A 625, 296–302 (2015)

    Article  Google Scholar 

  23. X. Zhang, E. Lilleodden, and J. Wang, MRS Bull. 46, 217–224 (2021)

    Article  Google Scholar 

  24. T. Hebesberger, R. Pippan, H. Stuwe, Effect of Pressure on the final grain size afer high pressure torsion, Proceddings of TMS annual meeting Ultrafine Grained Materials II , pp. 133–140 (2002)

  25. W. Oliver, and G. Pharr, J. Mater. Res. 7(6), 1564–1583 (1992)

    Article  Google Scholar 

  26. J. Wheeler, and J. Michler, Rev. Sci. Instr. 84, 101301 (2013)

    Article  Google Scholar 

  27. K. Horita, and T.G. Langdon, Mater. Sci. Eng. A 410–411(25), 422–425 (2005)

    Article  Google Scholar 

  28. J. Cizek, M. Janecek, O. Srba, R. Kuzel, Z. Barnovska, I. Prochazl, and S. Dobatkin, Acta Mater. 59, 2322–2329 (2011)

    Article  Google Scholar 

  29. A. Vorhauer, and R. Pippan, Scripta Mater. 51(9), 921–925 (2004)

    Article  Google Scholar 

  30. S. Lee, and Z. Horita, Mater. Trans. 53, 38–45 (2012)

    Article  Google Scholar 

  31. S. Chu, and J. Li,J. Mater. Sci. 12, 2200–2208 (1977)

    Article  Google Scholar 

  32. F. Li, Y. Xie, M. Song, S. Ni, S. Guo, and X. Liao, Mater. Sci. Eng. A 654, 53–59 (2016)

    Article  Google Scholar 

  33. P. Sudharashan Phani, and W. Oliver, Acta Mater. 111, 31–38 (2016)

    Article  Google Scholar 

  34. J. Dean, A. Bradbury, G. Aldrich-Smith, and T. Clyne, Mech. Mater. 65, 124–134 (2013)

    Article  Google Scholar 

  35. D. Frazer, B. Shaffer, B. Gong, P. Peralta, J. Lian, and P. Hosemann, J. Nucl. Mater 545, 152605 (2021)

    Article  Google Scholar 

  36. M. Wurmshuber, D. Frazer, A. Bachmaier, Y. Wang, P. Hosemann, and D. Kiener, Mater. Des. 160, 1148–1157 (2018)

    Article  Google Scholar 

  37. C. Schuh, and K. Lu, MRS Bull. 46, 225–235 (2021)

    Article  Google Scholar 

  38. H. Gleiter, Acta Mater. 48(1), 1–29 (2000)

    Article  Google Scholar 

  39. Gertsman, V. Yu, and R. Birringer, Scr. Metall. Mater. 30(5), 577–581 (1994)

    Article  Google Scholar 

  40. J.T.A. Roberts, Acta Metall. 22(7), 873–878 (1974)

    Article  Google Scholar 

  41. A. Schneider, C. Frick, E. Arzt, W. Clegg, and S. Korte, Philos. Mag. Lett. 93, 331–338 (2013)

    Article  Google Scholar 

  42. Y. Yang, D. Frazer, M. Balooch, and P. Hosemann, J. Nucl. Mater. 512, 137–143 (2018)

    Article  Google Scholar 

  43. M. Wurmshuber, D. Frazer, M. Balooch, I. Issa, A. Bachmaier, P. Hosemann, and D. Kiener, Mater. Charact. 171, 110822 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Erich Schmid Institute of Materials Science for use of their HPT set-up and Silke Kaufmann for assistance in sample preparation of the HPT disks. The authors would like to thank the National Academy Keck Futures Initiative for grant PN 6019 for funding. The authors also acknowledge funding from NSF DMR Award no. 1807822. This work was performed at the biomolecular nanotechnology Center, a core facility of the California Institute for Quantitative Biosciences. The work was supported through the INL Laboratory Directed Research & Development (LDRD) Program under DOE Idaho Operations Office Contract DE-AC07-05ID14517.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Frazer.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frazer, D., Connick, R.C., Howard, C. et al. Mechanical Property Evaluation of CuNb Composites Manufactured with High-Pressure Torsion. JOM 74, 4026–4034 (2022). https://doi.org/10.1007/s11837-022-05376-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05376-z

Navigation