Skip to main content
Log in

Optimization of Cobalt Reductive Leaching from Zinc Plant Residue (ZPR) Using Taguchi Experimental Design Method

  • Progress on Recovery of Critical Raw Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Hydrometallurgy is a flexible and efficient process for recovering heavy and valuable metals from industrial residues. In this study, various parameters of cobalt reductive leaching were investigated using the Taguchi experiment design (DOE) method to determine the best conditions for dissolving cobalt from zinc plant residue. The experiment parameters included: initial sulfuric acid concentration (0.1 M, 0.316 M and 1 M), reaction temperature (70, 80 and 90°C), reaction time (15, 30 and 60 min), and solid/liquid ratio (1:5, 1:6 and 1:7 g/L). The iron sulfate was used as a reducing agent, and the sulfuric acid was used as the solvent. The experiment results showed that the optimal conditions for dissolving cobalt were initial sulfuric acid concentration 1 M, temperature 90°C, time 60 min, and solid/liquid ratio 1:7. Under these conditions, there was good agreement between predicted (97.5%) and experimental results (97.2%) in terms of cobalt dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Kongolo, M.D. Mwema, A.N. Banza, and E. Gock, Miner. Eng 16, 1371 (2003).

    Article  Google Scholar 

  2. M. Liwen, N. Xiaoli, X. Zuoren, and H. Xin’gang, Hydrometallurgy 136, 1 (2013).

    Article  Google Scholar 

  3. Z. Xiu-jing, L. Nai-jun, Z. Xu, F. Yan, and J. Lan, Trans. Nonferrous Met. Soc. China 21, 2117 (2011).

    Article  Google Scholar 

  4. L. Boisvert, K. Turgeon, J.F. Boulanger, C. Bazin, and G. Houlachi, Metals 10, 1553 (2020).

    Article  Google Scholar 

  5. M.K. Jha, V. Kumar, and R. Singh, Resources, Conserv. Recycl. 33, 1 (2001).

    Article  Google Scholar 

  6. B. Kasongo, and H.M. Mwanat, South African J. Sci. 117(5-6), 1–8 (2021).

    Google Scholar 

  7. Y. Zhang, Q. Liu, and C. Sun, Miner. Eng. 14(5), 525–537 (2001).

    Article  Google Scholar 

  8. M. Tanaka, K. Koyama, H. Nartia, and T. Oihi, Recycling valuable metals via hydrometallurgical routes (Design for innovative value towards a sustainable society, Springer, 2012), pp 507–512.

    Google Scholar 

  9. M. Minakshi, N. Sharma, D. Ralph, D. Appadoo, and K. Nallathamby, Solid-state lett. 14, 86 (2011).

    Article  Google Scholar 

  10. C.C. Yong, B.R. Keith, Z. Wensheng, Z. Zhaowu, P. Yoko, and J. Chin, Eng 24, 237 (2016).

    Google Scholar 

  11. C. Fan, X. Zhai, Y. Fu, Y. Chang, B. Li, and Z. Ting-an, Hydrometallurgy 105(1-2), 191–194 (2010).

    Article  Google Scholar 

  12. R. Ewa, B. Lidia, and G. Wanda, Miner. Eng 22, 88 (2009).

    Article  Google Scholar 

  13. S. Shaole, S. Wei, W. Li, L. Runqing, H. Haisheng, H. Yuehua, Y. Yue, and J. Environ, Chem. Eng 7, 102777 (2019).

    Google Scholar 

  14. G. Bina, D. Akash, and S. Virendra, Hydrometallurgy 70, 121 (2003).

    Article  Google Scholar 

  15. J.M. Kumar, K. Anjan, J.A. Kumari, K. Vinay, H. Jhumki, and D.P. Banshi, Waste Manage 33, 1890 (2013).

    Article  Google Scholar 

  16. S. Palanivel, and S. Natarajan, Met 2, 24 (2012).

    Google Scholar 

  17. Z. Yunran, T. Jia, L. Shijun, H. Fang, L. Mei, J. Wei, and H. Jiugang, Sep. Purif. Technol 101, 240 (2020).

    Google Scholar 

  18. C.C. Yong, U. Mark, D. Michael, P. Yoko, and Z. Zhaowu, Miner. Eng 77, 17 (2015).

    Article  Google Scholar 

  19. A. ZhangL, B. NieZ, C. XiX, and D. MaL, Sep. Purif. Technol 195, 244 (2018).

    Article  Google Scholar 

  20. R.K. Mishra, P.C. Rout, K. Sarangi, and K.C. Nathsarma, Trans. Nonferrous Met. Soc. China 26, 301 (2016).

    Article  Google Scholar 

  21. L. Guang-hui, R. Ming-jun, L. Qian, P. Zhi-wei, and J. Tao, Trans. Nonferrous Met. Soc. China 20, 1517 (2010).

    Article  Google Scholar 

  22. P. Rafighi, M.R. Yaftian, and N. Noshiranzadeh, Sep. Purif. Technol 75, 32 (2010).

    Article  Google Scholar 

  23. X. Peng, W. Cheng-yan, X. Sheng-ming, and J. Zhong-jun, Trans. Nonferrous Met. Soc. China 23, 517 (2013).

    Article  Google Scholar 

  24. F. Farahmand, D. Moradkhani, M.S. Safarzadeh, and F. Rashchi, Hydrometallurgy 95(3-4), 316–324 (2009).

    Article  Google Scholar 

  25. A. Fattahi, F. Rashchi, and E. Abkhoshk, Hydrometallurgy 161, 185–192 (2016).

    Article  Google Scholar 

  26. M.S. Safarzadeh, D. Nikhil, B. Mustafa, and D. Moradkhani, Hydrometallurgy 106, 51 (2011).

    Article  Google Scholar 

  27. R. Ahmadi, and H.R. Madaah Hosseini, Mater. Sci-Poland 31, 253 (2013).

    Article  Google Scholar 

  28. A. Babaei-Dehkordi, J. Moghaddam, and A. Mostafaei, Mater. Res. Bull 48, 4235 (2013).

    Article  Google Scholar 

  29. G. Taguchi, E.A. Elsayed, and T.C. Hsiang, Quality engineering in production systems (McGraw-Hill, New York, 1989), pp 12–23.

    Google Scholar 

  30. B. Behnajady, and J. Moghaddam, Chem. Eng. Res. Des 117, 564 (2017).

    Article  Google Scholar 

  31. R. Golmohammadzadeh, F. Rashchi, and E. Vahidi, Waste Manage 64, 244 (2017).

    Article  Google Scholar 

  32. M. Kavand, P. Eslami, and L. Razeh, J. Water Process. Eng 34, 101151 (2020).

    Article  Google Scholar 

  33. K. Ozgul, Hydrometallurgy 95, 333 (2009).

    Article  Google Scholar 

  34. S. Karimi, F. Rashchi, and J. Moghaddam, Int. J. Miner. Process 162, 58 (2017).

    Article  Google Scholar 

  35. M. Deniz Turan, H. Soner Altundogan, and F. Tumen, Hydrometallurgy 75, 169 (2004).

    Article  Google Scholar 

  36. S. Basudev, J. Jinki, L. Jae-chun, L. Gae-Ho, and S. Jeong-Soo, J. Power Sources 167, 536 (2007).

    Article  Google Scholar 

  37. D. Moradkhani, B. Sedaghat, M. Khodakarami, and I. Ataei, Miner. Process. 50(2), 735–746 (2014).

    Google Scholar 

  38. S.B. Kanungo, and R.P. Das, Hydrometallurgy. 21, 41–58 (1988).

    Article  Google Scholar 

  39. D.W. Fuerstenau, and K.N. Han, Miner. Process. Technol. Rev. 1, 1–83 (1983).

    Google Scholar 

  40. J.C. Agarwal, N. Beecher, D.S. Davis, G.L. Hubred, V.K. Kakaria, and R.N. Kust, J. Metals. 28, 24–31 (1976).

    Google Scholar 

  41. J.M. Richardson, L.G. Stevens, and M.C. Kuhn, The recovery of metal values from nickel-bearingllaterite ores by reductive roast/ammonia leach technology (Process and fundamental considerations of selected hydrometallurgical systems, New York, 1981), pp 17–34.

    Google Scholar 

Download references

Acknowledgement

The authors appreciate the support of Zanjan Zinc KhalesSazan Industries Company (ZZKICO) to provide samples and analysis used in present investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ahmadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodaei, M., Moghaddam, J. & Ahmadi, R. Optimization of Cobalt Reductive Leaching from Zinc Plant Residue (ZPR) Using Taguchi Experimental Design Method. JOM 74, 3030–3038 (2022). https://doi.org/10.1007/s11837-022-05370-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05370-5

Navigation