Skip to main content

Advertisement

Log in

A Preliminary Study on the Flexural Behavior of Nacre-Inspired Cementitious Materials

  • Interactions between Biomaterials and Biological Tissues and Cells
  • Published:
JOM Aims and scope Submit manuscript

Abstract

There exist numerous instances of natural materials with hierarchical and layered microstructures having superior mechanical and functional properties. An example of such a material is nacre, which is a tough natural composite found in the inner part of many seashells. This preliminary study aimed to obtain an understanding of the flexural strength and ductility of bio-inspired cementitious samples inspired by the techniques that nacre uses. In this work, we fabricated and tested samples that contain polymeric layers sandwiched between cementitious layers, mimicking the layering of aragonite tablets and proteins found in nacre. Results of this preliminary study show that using the layering feature found in nacre can improve the flexural strength of mortar samples. In addition, increased ductility was observed in the nacre-inspired samples compared with control samples due to crack deflection and layers sliding. Finite element analysis was performed to probe the effect of geometries and mechanical properties on the flexural behavior of nacre-inspired cementitious beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Liu, and L. Jiang, Nano Today 6, 155 (2011).

    Article  Google Scholar 

  2. U.G. Wegst, H. Bai, E. Saiz, A.P. Tomsia, and R.O. Ritchie, Nat. Mater. 14, 23. (2015).

    Article  Google Scholar 

  3. E. Munch, M.E. Launey, D.H. Alsem, E. Saiz, A.P. Tomsia, and R.O. Ritchie, Science 322, 1516 (2008).

    Article  Google Scholar 

  4. M.A. Meyers, and P.Y. Chen, Biological Materials science: Biological materials, Bioinspired materials and biomaterials (Cambridge University Press, Cambridge, 2014).

    Book  Google Scholar 

  5. P. Forbes, Sci. Am. 299, 88 (2008).

    Article  Google Scholar 

  6. S. Nishimoto, and B. Bhushan, Rsc. Adv. 3, 671 (2013).

    Article  Google Scholar 

  7. Y.H. Cohen, and Y. Reich, Biomimetic Design Method for Innovation and Sustainability (Springer, Cham, 2016), pp 19–29.

    Book  Google Scholar 

  8. C. Yu, Y. Li, X. Zhang, X. Huang, V. Malyarchuk, S. Wang, Y. Shi, L. Gao, Y. Su, and Y. Zhang, Proc. Natl. Acad. Sci. 111, 12998 (2014).

    Article  Google Scholar 

  9. Z. Yu, F.F. Yun, Y. Wang, L. Yao, S. Dou, K. Liu, L. Jiang, and X. Wang, Small 13, 1701403. (2017).

    Article  Google Scholar 

  10. P. Podsiadlo, S. Paternel, J.-M. Rouillard, Z. Zhang, J. Lee, J.-W. Lee, E. Gulari and N.A. Kotov, Langmuir 11915, 21 (2005).

  11. J.S. Turner and R.C. Soar, In First International Conference on Industrialized, Intelligent Construction at Loughborough University, (2008), pp 1-18.

  12. P.M. Hunger, A.E. Donius, and U.G. Wegst, J. Mech. Behav. Biomed. Mater. 87, 19 (2013).

    Google Scholar 

  13. J.E. Rim, P. Zavattieri, A. Juster, and H.D. Espinosa, J. Mech. Behav. Biomed. Mater. 190, 4 (2011).

    Google Scholar 

  14. F. Barthelat, H. Tang, P. Zavattieri, C.-M. Li, and H. Espinosa, J. Mech. Phys. Solids 55, 306 (2007).

    Article  Google Scholar 

  15. M.A. Meyers, P.-Y. Chen, A.Y.-M. Lin, and Y. Seki, Prog. Mater. Sci. 1, 53 (2008).

    Google Scholar 

  16. S. Alghamdi, T. Tan, C. Hale-Sills, F. Vilmont, T. Xia, J. Yang, D. Huston, and M. Dewoolkar, Sci. Rep. 1, 7 (2017).

    Google Scholar 

  17. X. Li, Z.-H. Xu, and R. Wang, Nano lett. 6, 2301 (2006).

    Article  Google Scholar 

  18. S. Alghamdi, F. Du, J. Yang, G. Pinder, and T. Tan, J. Mech. Phys. Solids 138, 103928 (2020).

    Article  Google Scholar 

  19. S. Alghamdi, F. Du, J. Yang, and T. Tan, J. Mech. Behav. Biomed. Mater. 322, 88 (2018).

    Google Scholar 

  20. S. Alghamdi, Z. Liu, F. Du, J. Yang, K.A. Dahmen, and T. Tan, Nano lett. 20, 5024 (2020).

    Article  Google Scholar 

  21. F. Barthelat, and H. Espinosa, Exp. Mech. 47, 311 (2007).

    Article  Google Scholar 

  22. K.S. Katti, D.R. Katti, S.M. Pradhan, and A. Bhosle, J. Mater. Res. 20, 1097 (2005).

    Article  Google Scholar 

  23. D.G. Soltan, and V.C. Li, Cem. Concr. Compos. 88, 172 (2018).

    Article  Google Scholar 

  24. J.A. Rosewitz, H.A. Choshali, and N. Rahbar, Cem. Concr. Compos. 96, 252 (2019).

    Article  Google Scholar 

  25. F. Greco, L. Leonetti, A. Pranno, and S. Rudykh, Compos Struct. 233, 111625 (2020).

    Article  Google Scholar 

  26. S. Askarinejad, H.A. Choshali, C. Flavin, and N. Rahbar, Compos Struct. 118, 195 (2018).

    Google Scholar 

  27. J. Ye, K. Yu, J. Yu, Q. Zhang, and L. Li, Cem. Concr. Compos. 118, 103987 (2021).

    Article  Google Scholar 

  28. Z.H. Xu, Y. Yang, Z. Huang, and X. Li, Mater Sci. Eng. C 31, 1852 (2011).

    Article  Google Scholar 

  29. J. Blaber, B. Adair, and A. Antoniou, Exp. Mech. 55, 1105 (2015).

    Article  Google Scholar 

  30. Z.-H. Xu, and X. Li, Adv. Funct. Mater. 21, 3883 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support from Taif University Researchers Supporting Project Number (TURSP-2020/204), Taif University, Taif, Saudi Arabia, and support from Sun Yat-Sen University, Beijing Institute of Technology, University of Vermont and Vermont Technical College.

Funding

This research was funded by Taif University Researchers Supporting Project number (TURSP-2020/204), Taif University, Taif, Saudi Arabia, and support from Sun Yat-Sen University, Beijing Institute of Technology, University of Vermont, and Vermont Technical College.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting Tan or Saleh Alghamdi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsharif, M., Du, F., Althobaiti, S. et al. A Preliminary Study on the Flexural Behavior of Nacre-Inspired Cementitious Materials. JOM 74, 3445–3453 (2022). https://doi.org/10.1007/s11837-022-05348-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05348-3

Navigation