Skip to main content
Log in

Model Experiment for Molten Metal Temperature Homogenization with Rotating Permanent Magnet

  • Phenomena and Scales Influencing Alloy Solidification Microstructures
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In order to obtain a uniform thermal distribution of a liquid metal melt in e.g. aluminum furnaces, mixing can be provided by rotating permanent magnets. A rotating permanent magnet generates a rotating magnetic field which induces a volume force in the nearby liquid metal. This paper presents a quick-and-dirty experimental and numerical study of temperature equalization with a permanent magnet for a liquid metal volume with a vertical temperature gradient. Thermocouples and a thermal camera have been used to capture the temperature dynamics. The setup consists of a thin walled stainless steel container filled with GaInSn eutectic alloy and a cylindrical NdFeB permanent magnet placed near the side wall. A parametric sweep has been performed by changing the inclination angle of the magnet in order to find the most efficient position for which the thermal balance can be achieved the fastest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Available at https://openfoam.org/

  2. Available at http://www.elmerfem.org/

  3. Available at http://gmsh.info/

  4. Available at https://www.salome-platform.org/

  5. Available at https://gitlab.com/eurocc-latvia/mhd-mixing-hpc-model

References

  1. R. Cook, M. Varayud, S. Iijima, and E. Takahashi, Light metals (Springer, Cham, 2017)

    Google Scholar 

  2. J. Herbert, and B. Painter, Light metals (Springer, Cham, 2018)

    Google Scholar 

  3. A. Peel, and P.Y. Menet, J. Manuf. Sci. Prod. 15, 59 (2015)

    Google Scholar 

  4. A. Bojarevičs, R. Baranovskis, I. Kaldre, M. Milgrāvis, and T. Beinerts, IOP Conf. Ser.: Mater. Sci. Eng. 228, 012022 (2017)

    Article  Google Scholar 

  5. J. Zeng, W. Chen, Y. Yang, and A. Mclean, Metall. Mater. Trans. B 48, 3083 (2017)

    Article  Google Scholar 

  6. I. Bucenieks, Int. Conf. Nucl. Eng., Proc., 14th 42436, 185 (2006)

    Article  Google Scholar 

  7. A. Bojarevičs, T. Beinerts, M. Sarma, and Y. Gelfgat, PAMIR Int. Conf. Fundam. Appl. MHD, 9th 2, 251 (2014)

    Google Scholar 

  8. I. Kaldre, A. Bojarevičs, T. Beinerts, R. Baranovskis, R. Nikoluskins, M. Milgrāvis, and M. Kalvāns, in IOP Conf. Ser.: Mater. Sci. Eng. 424, 012057 (2018)

    Article  Google Scholar 

  9. A. Bojarevičs, and T. Beinerts, Magnetohydrodyn. 46, 333 (2010)

    Article  Google Scholar 

  10. A. Peel, and J. Herbert, Light metals (Springer, Cham, 2016)

    Google Scholar 

  11. B. Willers, S. Eckert, P.A. Nikrityuk, D. Räbiger, J. Dong, K. Eckert, and G. Gerbeth, Metall. Mater. Trans. B 39, 304 (2008)

    Article  Google Scholar 

  12. S. Eckert, P.A. Nikrityuk, B. Willers, D. Räbiger, N. Shevchenko, H. Neumann-Heyme, V. Travnikov, S. Odenbach, A. Voigt, and K. Eckert, Eur. Phys. J.: Spec. Top. 220, 123 (2013)

    Google Scholar 

  13. R. Baranovskis, M. Sarma, M. Ščepanskis, T. Beinerts, A. Gaile, S. Eckert, D. Räbiger, E. Lehmann, K. Thomsen, and P. Trtik, Magnetohydrodyn. 56, 43 (2020)

    Article  Google Scholar 

  14. I. Grants, Phys. Fluids 33, 055115 (2021)

    Article  Google Scholar 

  15. S. Eckert, and G. Gerbeth, Exp. Fluids 32, 542 (2002)

    Article  Google Scholar 

  16. A. Cramer, C. Zhang, and S. Eckert, Flow Meas. Instrum. 15, 145 (2004)

    Article  Google Scholar 

  17. M. Ščepanskis, M. Sarma, P. Vontobel, P. Trtik, K. Thomsen, A. Jakovičs, and T. Beinerts, Metall. Mater. Trans. B 48, 1045 (2017)

    Article  Google Scholar 

  18. T. Lappan, M. Sarma, S. Heitkam, P. Trtik, D. Mannes, K. Eckert, and S. Eckert, Magnetohydrodyn. 56, 167 (2020)

    Article  Google Scholar 

  19. D. Musaeva, E. Baake, A. Koppen, and P. Vontobel, Magnetohydrodyn. 53, 583 (2017)

    Article  Google Scholar 

  20. S. Eckert, A. Cramer, and G. Gerbeth, Magnetohydrodynamics (Springer, Cham, 2007)

    Google Scholar 

  21. J. Stasiek, and T. Kowalewski, Optoelectron. Rev. 10, 1 (2002)

    Google Scholar 

  22. L.N. Fletcher, G. Orton, O. Mousis, P. Yanamandra-Fisher, P. Parrish, P. Irwin, B. Fisher, L. Vanzi, T. Fujiyoshi, T. Fuse, A. Simon-Miller, E. Edkins, T. Hayward, and J. De Buizer, Icarus 208, 306 (2010)

    Article  Google Scholar 

  23. Y. Huang, J. Rong, J. Guo, W. Wang, Y. Wang, K. Lu, S. Guo, and L. Cao, Int. J. Therm. Sci. 170, 107144 (2021)

    Article  Google Scholar 

  24. P. Oborin, S. Khripchenko, and E. Golbraikh, Magnetohydrodyn. 50, 291 (2014)

    Article  Google Scholar 

  25. O. Ben-David, A. Levy, B. Mikhailovich, M. Avnaim, and A. Azulay, Int. J. Heat Mass Transfer 99, 882 (2016)

    Article  Google Scholar 

  26. K. Bolotin, I. Smolyanov, E. Shvydkiy, V. Frizen, and S. Bychkov, Magnetohydrodyn. 53, 723 (2017)

    Article  Google Scholar 

  27. V. Dzelme, A. Jegorovs, and A. Jakovics, IOP Conf. Ser.: Mater. Sci. Eng. 950, 012018 (2020)

    Article  Google Scholar 

  28. L. del Campo, R.B. Pérez-Sáez, and M.J. Tello, Corros. Sci. 50, 194 (2008)

    Article  Google Scholar 

  29. R. Monier, F. Thumerel, J. Chapuis, F. Soulie, and C. Bordreuil, Meas. 101, 72 (2017)

    Article  Google Scholar 

  30. M. Cehlin, B. Moshfegh, and M. Sandberg, Proc. Room-Vent 339, 871 (2000)

    Google Scholar 

  31. Y. Plevachuk, V. Sklyarchuk, S. Eckert, G. Gerbeth, and R. Novakovic, J. Chem. Eng. Data 59, 757 (2014)

    Article  Google Scholar 

  32. A.J. Reynolds, Turbulent flows in engineering (John Wiley London, New York, 1974), p. 462

    Google Scholar 

  33. J. Vencels, P. Råback, and V. Geza, SoftwareX 9, 68 (2019)

    Article  Google Scholar 

  34. D. Berenis, R. Baranovskis, I. Grants, T. Beinerts, and A. Bojarevičs, Phys. Fluids 33, 055127 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This study has been financed by the European Regional Development Fund project “Electromagnetic technology for aluminium degassing process” under Grant No. 1.1.1.1/18/A/149. The HPC simulations were performed using the code developed as a part of the activities organized by the EuroCC National HPC Competence Centre of Latvia. D. Berenis received funding from project “Strengthening of the capacity of doctoral studies at the University of Latvia within the framework of the new doctoral model”, identification No. 8.2.2.0/20/I/006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivars Krastiņš.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 13294 kb)

Supplementary file 2 (MP4 32752 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berga, K.K., Berenis, D., Kalvāns, M. et al. Model Experiment for Molten Metal Temperature Homogenization with Rotating Permanent Magnet. JOM 74, 2450–2460 (2022). https://doi.org/10.1007/s11837-022-05288-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05288-y

Navigation