Skip to main content
Log in

Static Recrystallization Behavior of Mg–Gd–Y–Zn–Zr Alloy During Annealing Treatment

  • In-situ Methods for Understanding Deformation & MS Evolution in Mg Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The static recrystallization (SRX) behavior of upsetting-extrusion (UE) deformed Mg-13.14Gd-3.86Y-2.0Zn-0.39Zr alloy after different annealing treatments was investigated. The results shown that the SRX occurs after annealing treatment. The degree of SRX increased with increasing annealing temperature. Inside the deformed grains, the main formation mechanism of the recrystallized grains was due to the gradual transformation of a large number of low-angle grain boundaries (LAGBs) into high-angle grain boundaries (HAGBs) with the annealing treatment, thereby forming new grains. At the same time, the dislocation density of the alloy was also reduced. The average grain size decreased because the coarse deformed grains were gradually eroded by new recrystallized grains. No phase transformation occurred in the alloy after annealing treatment. The finely dispersed Mg5(Gd,Y) phase transformed from being abundantly distributed at the grain boundaries of the dynamic recrystallization (DRX) grains to precipitate gradually at the recrystallized grain boundary and inside the grains. The annealing treatment consumed the lamellar and block-shaped long-period stacking ordered (LPSO) phases as strengthening phases, and the newly generated recrystallized grains had random orientations, so the basal texture strength of the alloy decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. Xu, J. Yu, G. Wu, L. Jia, and F. Yan, Metals 10, 985 (2020).

    Article  Google Scholar 

  2. L. Jia, J. Yu, W. Xu, G. Wu, Q. Xia, and Z. Zhang, Mater. Res. Express 8, 036504 (2021).

    Article  Google Scholar 

  3. B. Mordike, and T. Ebert, Mater. Sci. Eng. A. 302, 37–45 (2001).

    Article  Google Scholar 

  4. H. Takuda, T. Enami, K. Kubota, and N. Hatta, Matera. Process. Tech. 101, 281–286 (2000).

    Article  Google Scholar 

  5. Z. Ma, F. Hu, Z. Wang, K. Fu, Z. Wei, J. Wang, and W. Li, Materials 13, 3107 (2020).

    Article  Google Scholar 

  6. X. Xia, K. Zhang, M. Ma, and T. Li, J. Rare Earth 38, 1119–1125. https://doi.org/10.1016/j.jre.2020.05.012 (2020).

    Article  Google Scholar 

  7. X. Li, T. Al-Samman, S. Mu, and G. Gottstein, Mater. Sci. Eng. A 528, 7915–7925 (2011).

    Article  Google Scholar 

  8. L. Jiang, W. Liu, G. Wu, and W. Ding, Mater. Sci. Eng. A 612, 293–301 (2014).

    Article  Google Scholar 

  9. J. Zhang, S. Liu, R. Wu, L. Hou, M. Zhang, and J. Magnes, Alloy 6, 277–291. https://doi.org/10.1016/j.jma.2018.08.001 (2018).

    Article  Google Scholar 

  10. S.-J. Meng, H. Yu, S.-D. Fan, Q.-Z. Li, S.H. Park, J.S. Suh, Y.M. Kim, X.-L. Nan, M.-Z. Bian, F.-X. Yin, W.-M. Zhao, B.S. You, and K.S. Shin, Acta Metall. Sin. 32, 145–168 (2019).

    Article  Google Scholar 

  11. T. Chen, Z. Chen, J. Shao, R. Wang, L. Mao, and C. Liu, Mater. Des. 152, 1–9 (2018).

    Article  Google Scholar 

  12. F. Mirza, D. Chen, and D. Li, Mater. Des. 46, 411–418 (2013).

    Article  Google Scholar 

  13. A. Jana, M. Das, and V.K. Balla, J. Alloys Compd. 821, 153462 (2019).

    Article  Google Scholar 

  14. H. Mirzadeh, J. Mater. Res. Technol. 5, 1–4 (2016).

    Article  Google Scholar 

  15. Y. Li, G. Zhu, D. Qiu, D. Yin, Y. Rong, and M. Zhang, J. Alloy. Compd. 660, 252–257 (2016).

    Article  Google Scholar 

  16. J. Saal, and C. Wolverton, Acta Mater. 68, 325–338 (2014).

    Article  Google Scholar 

  17. S. Huang, J. Wang, F. Hou, X. Huang, and F. Pan, Mater. Sci. Eng. A 612, 363–370 (2014).

    Article  Google Scholar 

  18. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Progr. Mater. Sci. 45, 103–189. https://doi.org/10.1016/S0079-6425(99)00007-9 (2000).

    Article  Google Scholar 

  19. Q. Chen, Z.D. Zhao, Z.X. Zhao, C.K. Hu, and D.Y. Shu, J. Alloys Compd. 509, 7303–7315 (2011).

    Article  Google Scholar 

  20. Y. Xu, L.X. Hu, Y. Sun, and T. Nonferr, Metal Soc 25, 381–388. https://doi.org/10.1016/S1003-6326(15)63614-7 (2015).

    Article  Google Scholar 

  21. Y. Meng, J. Yu, K. Liu, H. Yu, and H. Wang, J. Alloy. Compd. 828, 154454 (2020).

    Article  Google Scholar 

  22. T. Chen, Z. Chen, J. Shao, R. Wang, L. Mao, and C. Liu, J. Alloy. Compd. 818, 152814 (2020).

    Article  Google Scholar 

  23. Y. Meng, J. Yu, Z. Zhang, Y. Wu, and Z. Shi, Mater. Sci. Forum 993, 194–202 (2020).

    Article  Google Scholar 

  24. A. Jx, B. Zca, A. Js, C. Tao, L. Xia, and A. Cl, Mater. Charact. 167, 110515 (2020).

    Article  Google Scholar 

  25. Z. Yu, C. Xu, and J. Meng, J. Alloys Compd. 729, 627–637 (2017).

    Article  Google Scholar 

  26. G. Zhang, Z. Zhang, X. Li, Z. Yan, X. Che, J. Yu, and Y. Meng, J. Alloys Compd. 790, 48–57 (2019).

    Article  Google Scholar 

  27. Y.M. Kim, C. Mendis, T. Sasaki, D. Letzig, F. Pyczak, K. Hono, and S.B. Yi, Scr. Mater. 136, 41–45 (2017).

    Article  Google Scholar 

  28. L.Y. Zhao, H. Yan, R.S. Chen, and E.H. Han, Mater. Charact. 150, 252–266 (2019).

    Article  Google Scholar 

  29. Y. Li, Q. Wang, G. Gao, J. Li, and G. Xu, Rare Met. 38, 937–945 (2019).

    Article  Google Scholar 

  30. Z. Zhang, Q. Huo, Z. Xiao, Y. Zhang, and X. Yang, Mater. Sci. Eng. A 812, 141102 (2021).

    Article  Google Scholar 

  31. M. Zha, Y. Li, R. Mathiesen, R. Bjørge, and H.J. Roven, Nonferr. Metal. Soc. 24, 2301–2306. https://doi.org/10.1016/S1003-6326(14)63348-3 (2014).

    Article  Google Scholar 

  32. N. Su, X. Xue, H. Zhou, Y. Wu, Q. Deng, K. Yang, Q. Chen, B. Chen, and L. Peng, Mater. Charact. 165, 10396 (2020).

    Article  Google Scholar 

  33. B. Dong, X. Che, Z. Zhang, J. Yu, and M. Meng, J. Alloy Compd. 881, 160561 (2021).

    Article  Google Scholar 

  34. B. Li, B. Teng, and G. Chen, Mater. Sci. Eng. A 744, 396–405 (2019).

    Article  Google Scholar 

  35. Z.A. Jie, C.A. Zhe, A. Zy, A. Zz, and X. Yong, Mater. Sci. Eng. A. https://doi.org/10.1016/j.msea.2021.142103 (2021).

    Article  Google Scholar 

  36. Y. Yi, C. Liu, Y. Gao, S. Yu, S. Jiang, and Z. Chen, Mater. Charact. 144, 641–651 (2018).

    Article  Google Scholar 

  37. R. Han, L. Jia, Z. Zhang, Q. Wang, J. Yu, J. Xu, and Y. Xue, Mater. Res. Express. https://doi.org/10.1088/2053-1591/ac39c1 (2021).

    Article  Google Scholar 

  38. Y. Xu, C. Chen, J. Jia, X. Zhang, H. Dai, and Y. Yang, J. Alloys Compd. 748, 694–705 (2018).

    Article  Google Scholar 

  39. D. Zhang, T. Zhen, Q. Huo, Z. Xiao, Z. Fang, and X. Yang, Mater. Sci. Eng. A 715, 389–403 (2018).

    Article  Google Scholar 

  40. X.H. Shao, Z.Q. Yang, and X.L. Ma, Acta Mater. 58, 4760 (2010).

    Article  Google Scholar 

  41. W. Xu, J. Yu, L. Jia, C. Gao, Z. Miao, G. Wu, G. Li, and Z. Zhang, J. Magnes. Alloy. https://doi.org/10.1016/j.jma.2021.03.021 (2021).

    Article  Google Scholar 

  42. W. Xu, J. Yu, L. Jia, G. Wu, and Z. Zhang, Mater. Charact. https://doi.org/10.1016/j.matchar.2021.111215 (2021).

    Article  Google Scholar 

  43. P. Xu, J. Yu, and Z. Zhang, Materials 12, 17 (2019).

    Google Scholar 

  44. K. Sahithya, I. Balasundar, V. Singh, P. Ghosal, and T. Raghu, Prog. Nat. Sci. Mater. 26, 621–629. https://doi.org/10.1016/j.pnsc.2016.11.011 (2016).

    Article  Google Scholar 

  45. G. Wu, J. Yu, L. Jia, W. Xu, and B. Hao, Materials 13, 4932 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U20A20230) , the Natural Science Foundation of Shanxi Province (No. 201901D111176) , the open research special project supported by the Bureau of science, technology and industry for National Defense of China (No. WDZC2019JJ006) , the Key R&D program of Shanxi Province (International Co-operation) (No. 201903D421036) , the Project supported by the National Natural Science Foundation of China (Grant No. 52075501) , the Research Project Supported by Shanxi Scholarship Council of China (2021-127) and Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2018002).

Author information

Authors and Affiliations

Authors

Contributions

Zeru Wu: Writing – review & editing, Software, Data curation, Writing – original draft. Jianmin Yu: Methodology, Conceptualization. Ziwei Zhang: Software, Data curation. Hongbing Hu: Data curation. Zhimin Zhang: Funding acquisition.

Corresponding author

Correspondence to Jianmin Yu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Yu, J., Zhang, Z. et al. Static Recrystallization Behavior of Mg–Gd–Y–Zn–Zr Alloy During Annealing Treatment. JOM 74, 2566–2576 (2022). https://doi.org/10.1007/s11837-022-05286-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05286-0

Navigation