Skip to main content
Log in

Cementite Precipitation in Conventionally and Rapidly Tempered 4340 Steel

  • New Frontiers in Physical Metallurgy of Steels
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The influence of rapid tempering on cementite precipitation in 4340 steel was investigated within the tempered martensite embrittlement (TME) tempering regime. Cementite amount, size, and morphology, and matrix dislocation density were explored for rapid (1 s) and conventional (3600 s) tempering conditions with scanning electron microscopy (SEM) and x-ray diffraction (XRD), respectively, and compared at an equivalent degree of tempering (i.e., hardness). Rapid tempering resulted in an average refinement of cementite diameter by approximately 2–3 nm, and did not significantly alter cementite morphology, as determined by SEM, or phase fraction, as determined by Mössbauer spectroscopy, compared to conventional tempering. Previous studies have shown an improvement in toughness performance associated with the rapid tempering conditions explored here. Given the minimal carbide refinement observed in the present work, carbide size is not thought to be the primary microstructural factor in improving toughness properties of rapidly tempered conditions. Rather, impact toughness is likely influenced by differences in retained austenite content, as proposed in previous studies. The matrix dislocation content was similar between conventional and rapid tempering conditions at a given hardness, suggesting that the cementite refinement associated with rapid tempering was not promoted by the suppression of dislocation recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Hillert, Acta Metall. 7, 653 (1959).

    Article  Google Scholar 

  2. G. B. Olson and M. Cohen, Metall. Trans. A 9, 14A (1983).

  3. R.N. Caron and G. Krauss, Metall. Trans. 3, 2381 (1972).

    Article  Google Scholar 

  4. G.R. Speich and W.C. Leslie, Metall. Trans. 13, 1043 (1972).

    Article  Google Scholar 

  5. G. Krauss, Metall. Mater. Trans. A 17, 143 (2001).

    Google Scholar 

  6. G. Krauss, Steel Res. Int. 88, 1700038 (2017).

    Article  Google Scholar 

  7. G. Krauss, Phase Transform. Steels (Elsevier, Amsterdam, 2012), p 126.

    Book  Google Scholar 

  8. M. Saeglitz and G. Krauss, Metall. Mater. Trans. A 28, 377 (1997).

    Article  Google Scholar 

  9. A. Nakashima and J.F. Libsch, Trans. ASM 53, 753 (1961).

    Google Scholar 

  10. K. Kawasaki, T. Chiba, and T. Yamazaki, Tetsu-Hagane 74, 342 (1988).

    Article  Google Scholar 

  11. T. Furuhara, K. Kobayashi, and T. Maki, ISIJ Int. 44, 1937 (2004).

    Article  Google Scholar 

  12. A. Nagao, K. Hayashi, K. Oi, S. Mitao, and N. Shikanai, Mater. Sci. Forum. 539–543, 4720 (2007).

  13. C. Revilla, B. López, and J.M. Rodriguez-Ibabe, Mater. Des. 62, 296 (2014).

    Article  Google Scholar 

  14. S. Sackl, M. Zuber, H. Clemens, and S. Primig, Metall. Mater. Trans. A 47, 3694 (2016).

    Article  Google Scholar 

  15. A.E. Vieweg, G. Ressel, P. Raninger, P. Prevedel, S. Marsoner, and R. Ebner, Metall. Res. Technol. 115, 407 (2018).

    Article  Google Scholar 

  16. S.T. Ahn, D.S. Kim, and W.J. Nam, J. Mater. Process. Technol. 160, 54 (2005).

    Article  Google Scholar 

  17. V.K. Judge, J.G. Speer, K.D. Clarke, K.O. Findley, and A.J. Clarke, Sci. Rep. 8, 445 (2018).

    Article  Google Scholar 

  18. V.K. Euser, D.L. Williamson, K.D. Clarke, K.O. Findley, J.G. Speer, and A.J. Clarke, Metall. Mater. Trans. A 50, 3654 (2019).

    Article  Google Scholar 

  19. V.K. Euser, A.J. Clarke, and J.G. Speer, J. Mater. Eng. Perform. 29, 4155 (2020).

    Article  Google Scholar 

  20. A. Nagao, K. Hayashi, K. Oi, and S. Mitao, ISIJ Int. 52, 213 (2012).

    Article  Google Scholar 

  21. V.K. Euser, D.L. Williamson, K.O. Findley, A.J. Clarke, and J.G. Speer, Metals 11, 1349 (2021).

    Article  Google Scholar 

  22. G. Thomas, Metall. Trans. A 9A, 439 (1978).

    Article  Google Scholar 

  23. R. M. Horn and O. Ritchie, Metall. Trans. A 9A, 15 (1978).

  24. K.W. Andrews, J. Iron Steel Inst. 203, 721 (1965).

    Google Scholar 

  25. J.P. Materkowski and G. Krauss, Metall. Trans. A 10, 1643 (1979).

    Article  Google Scholar 

  26. J.H. Hollomon and L.D. Jaffe, Trans. AIME 162, 223 (1945).

    Google Scholar 

  27. S. Murphy and J.H. Woodhead, Metall. Mater. Trans. B 3, 727 (1972).

    Article  Google Scholar 

  28. V. K. Euser, The Effect of Rapid Tempering on Microstructural Evolution and Toughness within the Tempered Martensite Embrittlement Regime of 4340 and 300-M, PhD Thesis (Colorado School of Mines, 2020).

  29. V.K. Euser, D.L. Williamson, A.J. Clarke, and J.G. Speer, ISIJ Int. 60, 2990 (2020).

    Article  Google Scholar 

  30. S.L. Semiatin, D.E. Stutz, and T.G. Byrer, J. Heat Treat. 4, 39 (1985).

    Article  Google Scholar 

  31. V.K. Judge, Effects of Short-Time Tempering on Mechanical Properties and Fracture of 4340 Steel (Colorado School of Mines, 2017).

    Google Scholar 

  32. W. S. Rasband, ImageJ (U.S. National Institutes of Health, Bethesda, MD, USA, n.d.).

  33. H.I. Faraoun, Y.D. Zhang, C. Esling, and H. Aourag, J. Appl. Phys. 99, 093508 (2006).

    Article  Google Scholar 

  34. D.T. Pierce, D.R. Coughlin, D.L. Williamson, K.D. Clarke, A.J. Clarke, J.G. Speer, and E. De Moor, Acta Mater. 90, 417 (2015).

    Article  Google Scholar 

  35. D.T. Pierce, D.R. Coughlin, D.L. Williamson, J. Kähkönen, A.J. Clarke, K.D. Clarke, J.G. Speer, and E. De Moor, Scr. Mater. 121, 5 (2016).

    Article  Google Scholar 

  36. I. Vieira, J. Klemm-Toole, E. Buchner, D.L. Williamson, K.O. Findley, and E. De Moor, Sci. Rep. 7, 1 (2017).

    Article  Google Scholar 

  37. Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation. 1–7 (2013). https://doi.org/10.1520/E0975-13.

  38. T. Ungár, I. Dragomir, Á. Révész, and A. Borbély, J. Appl. Crystallogr. 32, 992 (1999).

    Article  Google Scholar 

  39. F. HajyAkbary, J. Sietsma, A.J. Böttger, and M.J. Santofimia, Mater. Sci. Eng. A 639, 208 (2015).

    Article  Google Scholar 

  40. P.W. Voorhees, J. Stat. Phys. 38, 231 (1985).

    Article  Google Scholar 

  41. M.A. Meyers and K.K. Chawla, Mechanical Behavior of Materials, 2nd edn (Cambridge University Press, Cambridge, 2009).

    MATH  Google Scholar 

  42. E.J. Mittemeijer, L. Cheng, P.J. Van Der Schaaf, C.M. Brakman, and B.M. Korevaar, Metall. Trans. A 19A, 925 (1988).

    Article  Google Scholar 

  43. D. Kaiser, B. De Graaff, S. Dietrich, and V. Schulze, Metall. Res. Technol. 404, 1 (2018).

    Google Scholar 

  44. R. O’Hayre, Materials Kinetics Fundamentals (Wiley, 2015).

    Google Scholar 

  45. P.B. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley, and M.J. Whelan, Transmission Electron Microscopy of Thin Crystals (Krieger Publishing, Malabar, FL, 1977), 422.

  46. A.J. Clarke, J. Klemm-Toole, K.D. Clarke, D.R. Coughlin, D.T. Pierce, V.K. Euser, J.D. Poplawsky, B. Clausen, D. Brown, J. Almer, P.J. Gibbs, D.J. Alexander, R.D. Field, D.L. Williamson, J.G. Speer, and G. Krauss, Metall. Mater. Trans. A 51A, 22 (2020).

Download references

Acknowledgements

The sponsors of the Advanced Steel Processing and Products Research Center (ASPPRC) at the Colorado School of Mines are gratefully acknowledged for their financial support and technical guidance. Los Alamos National Laboratory (LANL) is recognized for providing the 4340 steel used in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Euser.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Euser, V.K., Williamson, D.L., Clarke, A.J. et al. Cementite Precipitation in Conventionally and Rapidly Tempered 4340 Steel. JOM 74, 2386–2394 (2022). https://doi.org/10.1007/s11837-022-05285-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05285-1

Navigation