Skip to main content
Log in

Interplay Among Cu/Mg Ratio, Microstructure and Microhardness in As-cast and Heat-Treated Al3CuxMg Alloys

  • Phenomena and Scales Influencing Alloy Solidification Microstructures
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Al3Cu-(xMg) alloys are attractive materials for the aerospace and automotive industries because they are heat treatable and have excellent properties related to high specific mechanical strength. Thus, the main goal of this work is to study the influence of Mg addition in the microstructure and microhardness (HV) of Al-3Cu-xMg alloys (x = 0.3 and 1 wt%) horizontally solidified and T6-heat treated. A water-cooled horizontal solidification device was used to obtain the as-cast ingot. In turn, as-cast samples were subjected to heat treatment by T6 under the following conditions: solution at 495°C for 3 h, quenching in warm water at 70°C and artificial aging at 155°C for 15, 30, 60 and 120 min. The role of the Cu/Mg ratio was evaluated in the formation and precipitation of the θ-Al2Cu binary and S-Al2CuMg ternary intermetallic phases on the microstructure and HV in as-cast and heat-treated samples. The results showed that the typical solidification dendritic microstructure was degenerated with T6 heat treatment, but the heat treatment produced harder microstructures. A comparative analysis with the Al-3Cu-0.5 Mg alloy (wt%) from the literature was conducted. This allowed deducing that the Cu/Mg ratio = 3 promoted greater hardening after the heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Source: Thermo-Calc-TTAL7.

Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X. Nie, H. Zhang, H. Zhu, Z. Hu, L. Ke, and X. Zeng, J. Mater. Process. Technol. 256, 69 (2018).

    Article  Google Scholar 

  2. H. Wang, C. Li, J. Li, X. Wei, R. Mei, and I.S.R.N. Mater, Sci. 2013, 1 (2013).

    Google Scholar 

  3. N.D. Alexopoulos, Z. Velonaki, C.I. Stergiou, and S.K. Kourkoulis, Mater. Sci. Eng. A 700, 457 (2017).

    Article  Google Scholar 

  4. R. Chen, Q. Xu, H. Guo, Z. Xia, Q. Wu, and B. Liu, Mater. Sci. Eng. A 685, 391 (2017).

    Article  Google Scholar 

  5. T.A. Costa, M. Dias, L.G. Gomes, O.L. Rocha, and A. Garcia, J. Alloys Compd. 683, 485 (2016).

    Article  Google Scholar 

  6. A. Barros, C. Cruz, A.P. Silva, N. Cheung, A. Garcia, O. Rocha, and A. Moreira, Acta Metall. Sin. Engl. Lett. 32, 695 (2019).

    Article  Google Scholar 

  7. A. Barros, C. Cruz, A.P. Silva, N. Cheung, A. Garcia, O. Rocha, and A. Moreira, Corros. Eng. Sci. Technol. 55(6), 471–479 (2020).

    Article  Google Scholar 

  8. I.A. Magno, F.A. Souza, M.O. Costa, J.M. Nascimento, A.P. Silva, T.S. Costa, and O.L. Rocha, Mater. Sci. Technol. 35, 791 (2019).

    Article  Google Scholar 

  9. M. Zhu, Z. Jian, G. Yang, and Y. Zhou, Mater. Des. 36(243), 1980–2015 (2012).

    Google Scholar 

  10. E. Acer, E. Çadırlı, H. Erol, T. Kırındı, and M. Gündüz, Mater. Sci. Eng. A 662, 144 (2016).

    Article  Google Scholar 

  11. T. Haskel, G.O. Verran, and R. Barbieri, Int. J. Fatigue 114, 1 (2018).

    Article  Google Scholar 

  12. S. Abis, M. Massazza, P. Mengucci, and G. Riontino, Scr. Mater. 45, 685 (2001).

    Article  Google Scholar 

  13. A. Cochard, K. Zhu, S. Joulié, J. Douin, J. Huez, L. Robbiola, P. Sciau, and M. Brunet, Mater. Sci. Eng. A 690, 259 (2017).

    Article  Google Scholar 

  14. Y.C. Lin, Y.-C. Xia, Y.-Q. Jiang, and L.-T. Li, Mater. Sci. Eng. A 556, 796 (2012).

    Article  Google Scholar 

  15. J. Zhang, Y.N. Huang, C. Mao, and P. Peng, Solid State Commun. 152, 2100 (2012).

    Article  Google Scholar 

  16. I. J. Polmear, Light Alloys: From Traditional Alloys to Nanocrystals, 4th ed (Elsevier/Butterworth-Heinemann, Oxford; Burlington, MA, 2006).

  17. I.J. Polmear, Light Alloys: Metallurgy of the Light Metals, 3rd edn (Butterworth-Heinemann, London, 1995).

    Google Scholar 

  18. B. Zlaticanin, S. Djuric, B. Jordovic, and B. Radonjic, J. Min. Metall. Sect. B Metall. 39, 509 (2003).

    Article  Google Scholar 

  19. S.L. Backerud, and G.K. Sigworth, Afs Trans 97, 459 (1989).

    Google Scholar 

  20. J. Tian, Y. Zhao, H. Hou, and P. Han, Solid State Commun. 268, 44 (2017).

    Article  Google Scholar 

  21. G. E. Totten and D. S. MacKenzie, editors, Handbook of Aluminum (M. Dekker, New York; Basel, 2003)

  22. H. Perlitz, and A. Westgren, Ark. Kemi Miner. Geol 16B, 13 (1943).

    Google Scholar 

  23. L.F. Mondolofo, Aluminuim Alloys: Structure and Properties (Butterworths, London, 1976).

    Google Scholar 

  24. N.A. Belov, D.G. Eskin, and A.A. Aksenov, Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys (Elsevier, Amsterdam, 2005).

    Google Scholar 

  25. X.-F. Ding, J.-P. Lin, L.-Q. Zhang, and G.-L. Chen, Trans. Nonferrous Met. Soc. China 21, 26 (2011).

    Article  Google Scholar 

  26. B.P. Reis, R.P. França, J.A. Spim, A. Garcia, E.M. da Costa, and C.A. Santos, J. Alloys Compd. 549, 324 (2013).

    Article  Google Scholar 

  27. A. Berkdemir, and M. Gündüz, Appl. Phys. A 96, 873 (2009).

    Article  Google Scholar 

  28. J.E. Spinelli, N. Cheung, P.R. Goulart, J.M. Quaresma, and A. Garcia, Int. J. Therm. Sci. 51, 145 (2012).

    Article  Google Scholar 

  29. J.E. Spinelli, B.L. Silva, N. Cheung, and A. Garcia, Mater. Charact. 96, 115 (2014).

    Article  Google Scholar 

  30. R.V. Reyes, T.S. Bello, R. Kakitani, T.A. Costa, A. Garcia, N. Cheung, and J.E. Spinelli, Mater. Sci. Eng. A 685, 235 (2017).

    Article  Google Scholar 

  31. Y. Kaygısız, and N. Maraşlı, Phys. Met. Metallogr. 118, 389 (2017).

    Article  Google Scholar 

  32. X.F. Zhang, and J.Z. Zhao, J. Cryst. Growth 391, 52 (2014).

    Article  Google Scholar 

  33. S. Li, J. Zhang, J. Yang, Y. Deng, and X. Zhang, Acta Metall. Sin. Engl. Lett. 27, 107 (2014).

    Article  Google Scholar 

  34. A. Gökçe, F. Fındık, and A.O. Kurt, Mater. Des. 46, 524 (2013).

    Article  Google Scholar 

  35. H.-C. Shih, N.-J. Ho, and J.C. Huang, Metall. Mater. Trans. A 27, 2479 (1996).

    Article  Google Scholar 

  36. M. Zamani, S. Toschi, A. Morri, L. Ceschini, and S. Seifeddine, J. Therm. Anal. Calorim. 139, 3427 (2020).

    Article  Google Scholar 

  37. E. Çadırlı, H. Kaya, U. Büyük, E. Üstün, and M. Gündüz, Int. J. Met. (2021). https://doi.org/10.1007/s40962-021-00667-8

Download references

Acknowledgements

The authors acknowledge the financial support provided by IFPA-Federal Institute of Education, Science and Technology of Pará, Postgraduate Program in Materials Engineering (PPGEMat/IFPA), UFPA-Federal University of Pará, and CNPq-National Council for Scientific and Technological Development (Grants 302846/2017-4 and 304924/2020-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otávio L Rocha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palheta, M., Rodrigues, H., Machado, G. et al. Interplay Among Cu/Mg Ratio, Microstructure and Microhardness in As-cast and Heat-Treated Al3CuxMg Alloys. JOM 74, 2437–2449 (2022). https://doi.org/10.1007/s11837-022-05271-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05271-7

Navigation