Skip to main content

Advertisement

Log in

Oscillating Currents Stabilize Aluminum Cells for Efficient, Low Carbon Production

  • Energy Efficiency and Low Carbon Footprint in Metals Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The electrolytic current in an aluminum smelter can amplify resonant motions on the Al–electrolyte interface, producing a circulating wave that can grow out of control. Thick electrolyte layers prevent this magnetohydrodynamic metal pad instability (MPI) but sacrifice efficiency because the electrolyte is a poor conductor. In high-fidelity simulations of a TRIMET 180 kA smelter, we found that adding an oscillating component to the current prevented the MPI and replaced it with stable standing waves. We also found that initiating an oscillating current component can halt the MPI in progress. In our simulations, stable operation with steady current required a 4.3-cm anode–cathode distance (ACD), but stable operation with oscillations was achieved at 3.8 cm ACD, with heat power reduced by 12% and overall power by 4%. Different frequencies or amplitudes might allow further ACD reduction. Our method could allow Al production at lower cost, with less energy, and a smaller carbon footprint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I.A. Institute, Aluminium sector greenhouse gas pathways to 2050 (IAI, 2021), https://international-aluminium.org/resource/aluminium-sector-greenhouse-gas-pathways-to-2050-2021/. Accessed from Jun 2021

  2. B. Gates, How to Avoid a Climate Disaster: The Solutions We Have and the Breakthroughs We Need (Alfred A Knopf, New york, 2021)

    Google Scholar 

  3. M. Gautam, B. Pandey, and M. Agrawal, Environmental Carbon Footprints (Elsevier, Amsterdam, 2018), p. 197

    Book  Google Scholar 

  4. P.A. Davidson, Mater. Sci. Technol. 16, 475 (2000). https://doi.org/10.1179/026708300101508027

    Article  Google Scholar 

  5. T. Sele, Metall. Trans. B 8, 613 (1977). https://doi.org/10.1007/BF02669338

    Article  Google Scholar 

  6. V. Bojarevics and M. Romerio, Eur. J. Mech. B 13, 33 (1994)

    Google Scholar 

  7. P.A. Davidson, Eur. J. Mech. B 13, 15 (1994)

    Google Scholar 

  8. P.A. Davidson and R.I. Lindsay, J. Fluid Mech. 362, 273 (1998). https://doi.org/10.1017/S0022112098001025

    Article  Google Scholar 

  9. O. Zikanov, A. Thess, P.A. Davidson, and D.P. Ziegler, Metall. Trans. B 31B, 1541 (2000). https://doi.org/10.1007/s11663-000-0039-6

    Article  Google Scholar 

  10. A. Lukyanov, G. El, and S. Molokov, Phys. Lett. A 290, 165 (2001). https://doi.org/10.1016/S0375-9601(01)00653-3

    Article  Google Scholar 

  11. N. Urata, Essential Readings in Light Metals (Wiley, New Jersey, 2013), p. 373

    Book  Google Scholar 

  12. N. Urata, Essential Readings in Light Metals (Wiley, New Jersey, 2013), p. 330

    Book  Google Scholar 

  13. W. Herreman, C. Nore, J.-L. Guermond, L. Cappanera, N. Weber, and G.M. Horstmann, J. Fluid Mech. 878, 598 (2019). https://doi.org/10.1017/jfm.2019.642

    Article  MathSciNet  Google Scholar 

  14. G. Politis and J. Pried, J. Fluid Mech. 915, A101 (2021). https://doi.org/10.1017/jfm.2021.100

    Article  Google Scholar 

  15. A. Pedcenko, S. Molokov, and B. Bardet, Metall. Trans. B 48, 6 (2017). https://doi.org/10.1007/s11663-016-0840-5

    Article  Google Scholar 

  16. A.D. Sneyd and A. Wang, J. Fluid Mech. 263, 343 (1994). https://doi.org/10.1017/S0022112094004143

    Article  Google Scholar 

  17. J. Gerbeau, C. Le Bris, and T. Lelièvre, Mathematical Methods for the Magnetohydrodynamics of Liquid Metals (Oxford University Press, Oxford, 2006), p. 251

    Book  Google Scholar 

  18. A. Lützerath, Light Metals 2013 (TMS, Warrendale, 2013), p. 659

    Book  Google Scholar 

  19. M. Dupuis and V. Bojarevics, Analyzing the impact on the cell stability power modulation on a scale of minutes (Aluminium Smelting Industry, 2021), pp. 54–57. Accessed from Jun 2021

  20. V. Bojarevics and J.W. Evans, Light Metals 2015 (TMS, Warrendale, 2015), p. 783

    Book  Google Scholar 

  21. D.H. Kelley and I. Mohammad, Systems and methods for energy efficient electrolysis cells (WIPO, 2021). https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2021163142&_cid=P12-KTERWI-60301-1. Accessed from Jun 2021

  22. G.O. Linnerud and R. Huglen, Method for electrical connection and magnetic compensation of aluminium reduction cells, and a system for same (WIPO, 2006). https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2006033578. Accessed from Jun 2021

  23. J. Chaffy, B. Langon, and M. Leroy, Device for connection between very high intensity electrolysis cells for the production of aluminium comprising a supply circuit and an independent circuit for correcting the magnetic field. https://patents.justia.com/inventor/joseph-chaffy. Accessed from Jun 2021

  24. M. Dupuis, A new aluminium electrolysis cell busbar network concept, ICSOBA (2015). http://www.genisim.com/download/A%20new%20aluminium%20electrolysis%20cell%20busbar%20network%20concept.pdf

  25. S. Akhmetov, J. Blasques, and M.I. Faraj, Potline retrofit to increase productivity under energy supply constraints. In: 12th Australasian Aluminium Smelting Technology Conference (Queenstown, New Zealand, 2018)

  26. N. Weber, P. Beckstein, W. Herreman, G.M. Horstmann, C. Nore, F. Stefani, and T. Weier, Phys. Fluids (2017). https://doi.org/10.1063/1.4982900

    Article  Google Scholar 

  27. G.M. Horstmann, N. Weber, and T. Weier, J. Fluid Mech. 845, 1 (2018). https://doi.org/10.1017/jfm.2018.223

    Article  MathSciNet  Google Scholar 

  28. O. Zikanov, Phys. Rev. E. 92, 063021 (2015). https://doi.org/10.1103/PhysRevE.92.063021

    Article  MathSciNet  Google Scholar 

  29. A. Allanore, L. Yin, and D.R. Sadoway, Nature 947, 353 (2013). https://doi.org/10.1038/nature12134

    Article  Google Scholar 

  30. D. Sadoway, Apparatus for electrolysis of molten oxides (WIPO, 2008). https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2008016526

  31. V. Bojarevics and K. Pericleous, Time dependent electric, magnetic and hydrodynamic interaction in aluminium electrolysis cells. In: Fifth International Conference on CFD in the Process Industries (Melbourne, 2006). https://www.cfd.com.au/cfd_conf06/PDFs/129Boj.pdf

  32. V. Bojarevicsa and K. Pericleous, Jim Evans Honorary Symposium (TMS, Warrendale, 2010), pp. 199–206

    Google Scholar 

  33. V. Bojarevics and K. Pericleous, Light Metals 2009 (TMS, Warrendale, 2009), pp. 569–574

    Google Scholar 

  34. V. Bojarevics, E. Radionov, and Y. Tretiyakov, Light Metals 2018 (TMS, Warrendale, 2018), pp. 551–556

    Book  Google Scholar 

  35. R. Shaoyong, Y. Feiya, M. Dupuis, V. Bojarevics, and Z. Jianfei, Light Metals 2013 (TMS, Warrendale, 2013), pp. 603–607

    Book  Google Scholar 

Download references

Acknowledgements

The authors are grateful for fruitful discussions with Riccardo Betti, Curtis Broadbent, Gerrit M. Horstmann, and Jonathan S. Cheng.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas H. Kelley.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Science Foundation (CBET-1552182) and by a University of Rochester, URVentures TAG award.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 1382 KB)

Supplementary file 2 (mp4 11196 KB)

Supplementary file 3 (mp4 6231 KB)

Supplementary file 4 (mp4 9767 KB)

Supplementary file 5 (mp4 10828 KB)

Supplementary file 6 (mp4 10460 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad, I., Dupuis, M., Funkenbusch, P.D. et al. Oscillating Currents Stabilize Aluminum Cells for Efficient, Low Carbon Production. JOM 74, 1908–1915 (2022). https://doi.org/10.1007/s11837-022-05254-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05254-8

Navigation