Skip to main content

Advertisement

Log in

Thermoeconomic Dynamics of Energy-Efficient Orange Hydrogen Production: An Energy Matter

  • Energy Efficiency and Low Carbon Footprint in Metals Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Multiple reports exist on the range of cost of production of hydrogen, from about US$1.20 to $12.00 per kg. Hydrogen exists mainly as part of compounds, and elemental hydrogen has to be formed from these compounds and/or from mixtures of compounds by spending energy. A detailed thermodynamic analysis revealed that this spectrum of costs exists primarily from the energy conversion costs and the economics of such energy conversions. This analysis leads to the simple low-cost possibilities of hydrogen from hydrocarbons, called 'orange' hydrogen, which is CO2-free, along with the ease of making it from the ground using present-day renewable energy as needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. N. Neelameggham, and B. Davis, J. Nanomater. Energy 5(1), 1. (2015).

    Google Scholar 

  2. G. Subramanian and N.R. Neelameggham (2017) in: Zhang L. et al. (eds) Energy Technology (Cham: Springer, 2017). https://doi.org/10.1007/978-3-319-52192-3_6

  3. Orange Hydrogen Website, https://indllc.wixsite.com/orangeh2. Accessed Aug 2 2021

  4. F.J. Salzano, and C. Braun (eds.), Hydrogen Energy Assessment (US Dept of Energy, Washington, 1977).

    Google Scholar 

  5. Blue Hydrogen—Global CCS Institute. https://www.globalccsinstitute.com. 2021/04. Accessed Aug 23 2021

  6. https://www.goldmansachs.com/insights/pages/gs-research/green-hydrogen/report.pdf. Accessed Aug 23 2021

  7. G. Kelsal, Hydrogen from coal, April 2021. www.coalage.com. 15–19.

  8. Hess's Law—Chemistry LibreTexts. https://chem.libretexts.org. Accessed Aug 28 2021

  9. C. Neal, and G. Stanger, Earth Planet. Sci. Lett. 66, 315. (1983).

    Article  Google Scholar 

  10. R.M. Coveney Jr., E.D. Goebel, E.J. Zeller, and E.E. Angino, AAPG Bull. 71, 39. (1987).

    Google Scholar 

  11. E.B. Gaucher, Elements 16, 8. (2020).

    Article  Google Scholar 

  12. H.S. Taylor, Industrial Hydrogen (The Chemical Catalog Company, New York, 1921).

    Google Scholar 

  13. IRENA, Green Hydrogen Cost Reduction (Abu Dhabi: International Renewable Energy Agency, 2020).

  14. S.K. Karuturi, H. Shen, A. Sharma, F.J. Beck, P. Varadhan, T. Duong, P.R. Narangari, D. Zhang, Y. Wan, J.-H. He, H.H. Tan, C. Jagadish, and K. Catchpole, Adv. Energy Mater. 10, 2070122. (2020).

    Article  Google Scholar 

  15. S. Trocino, C.L. Vecchio, S.C. Zignani, A. Carbone, A. Saccà, V. Baglio, R. Gómez, and A.S. Aricò, Catalysts 10, 1319. (2020).

    Article  Google Scholar 

  16. F. Haber, Thermodynamics of Technical Gas Reactions (London: Longmans, Green, 1908) pp. 345–346.

  17. A. Labanca, C. Silva, and L. Sacorague, Int. J. Astronaut. Aeronaut. Eng. 5, 42. (2020).

    Google Scholar 

  18. J.t Riley, C. Attallah, R. Siriwardane, and R. Stevens, Catalytic pyrolysis of methane: an experimental and Technoeconomic analysis for H2 and Carbon Co-Production, NETL Presentation, 2020.

  19. C. Guéret, M. Daroux, and F. Billaud, Chem. Eng. Sci. 52(5), 815. (1997).

    Article  Google Scholar 

  20. M. Pasquali and C. Mesters, We can use carbon to decarbonize—and get hydrogen for free. https://www.pnas.org/content/118/31/e2112089118#comment-5490160212. Accessed Aug 15 2021

  21. X. Li, C. Wu, and J. Han, Plasma Chem. Plasma Process. 36, 869. https://doi.org/10.1007/s11090-016-9697-2 (2016).

    Article  Google Scholar 

  22. S. Lynum, The Kvaerner CB & H process, Carbon Black World Conference 1996. https://www.bcuc.com/Documents/Proceedings/2005/DOC_6144_C1-KWSteeves.pdf. Accessed Aug 20 2021

  23. N. Muradov, Final report—Thermocatalytic CO2-Free Production of Hydrogen from Hydrocarbon Fuels, DOE contract No. DE-FC36-99GO10456, 1999–2003.

  24. T. Marquardt, A. Bode, and S. Kabelac, Energy Conversion Manag. 221, 113125. https://doi.org/10.1016/j.enconman.2020.113125 (2020).

    Article  Google Scholar 

  25. C. Salvador, Refuse Converting Method and apparatus utilizing long arc column forming Plasma torches, U.S. Patent 3779182, 1973

  26. SG-H2 Energy Global—Enzen Australia, Up-Cycling Waste to Renewable Hydrogen for Tasmania. https://www.stategrowth.tas.gov.au/__data/assets/pdf_file/0016/221452/SG_H2_Energy_submission_Enzen_Austrlalia_-_TRHAP.PDF. Accessed Sept 12 2021.

  27. R. Burlica, K.-Y. Shih, B. Hnatiuc, and B.R. Locke, Ind. Eng. Chem. Res. 50, 9466. (2011).

    Article  Google Scholar 

  28. B. Atakan, Energies 12, 3332. https://doi.org/10.3390/en12173332 (2019).

    Article  Google Scholar 

  29. C. Rudolph, and B. Atakan, Energy Technol. 9(3), 2000948. https://doi.org/10.1002/ente.202000948 (2021).

    Article  Google Scholar 

  30. S. Drost, R. Schießl, and U. Maas, Feasibility of natural gas pyrolysis for production of unsaturated hydrocarbons: an RCM study, Proceedings of the 27th International Colloquium on the Dynamics of Explosions and Reactive Systems. http://www.icders.org/ICDERS2019/abstracts/ICDERS2019-257.pdf.

  31. Y. Kawashima, and M. Iwamoto, Sci. Rep. 6, 28493. (2016).

    Article  Google Scholar 

  32. N.A. Adlan, S. Sabri, M. Masomian, M.S.M. Ali, R.N. Zaliha, and R.A. Rahman, Front. Microbiol. 11, 565608. (2020).

    Article  Google Scholar 

  33. A. Al-Qahtani, B. Parkinson, K. Hellgardt, N. Shah, and G. Guillen-Gosalbez, Appl. Energy 281, 115958. https://doi.org/10.1016/j.apenergy.2020.115958 (2020).

    Article  Google Scholar 

  34. F. Angikath, F. Abdulrahman, M. Khandavilli, X. Zhang, and S.M. Sarathy, Energy Fuels 35, 14597. https://doi.org/10.1021/acs.energyfuels.1c01880 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge support by Indra Neelameggham, IND LLC on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neale R. Neelameggham.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest in this self funded study of IND LLC.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neelameggham, N.R., Subramanian, G. & Kalamegham, P. Thermoeconomic Dynamics of Energy-Efficient Orange Hydrogen Production: An Energy Matter. JOM 74, 1923–1931 (2022). https://doi.org/10.1007/s11837-022-05162-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05162-x

Navigation