Skip to main content

Advertisement

Log in

Electroreduction of Antimony Sulfide Enhanced by Nitrogen Bottom Blowing in Molten NaCl-KCl-Na2S

  • Energy Efficiency and Low Carbon Footprint in Metals Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This work proposes a novel nitrogen bottom-blowing method to enhance mass transfer in the molten salt electrolysis process, improve current efficiency, and reduce electrolysis energy consumption. The effect of nitrogen agitation on the dissolution of Sb2S3 and Sb was studied. The effects of nitrogen flow rate, electrolytic temperature, cell voltage, and pole spacing on the distribution behavior of Sb during constant piezoelectric reduction were investigated. The results show that nitrogen agitation can obviously accelerate the dissolution of Sb2S3. The current efficiency of the cathode reaches 92.76%, the energy consumption is 1.78 kWh kg−1, and the grade of crude antimony is 98.5%. Compared to no nitrogen stirring, electrolytic current efficiency is improved by 19.87% and the energy consumption is saved by 20.89%. Furthermore, the appropriate flow rate of nitrogen accelerates the removal of sulfur from the reactor and avoids the formation of high-priced antimony compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.G. Anderson, Chem. Erde-Geochem. 72, 3 (2012).

    Article  Google Scholar 

  2. M.C. He, X.Q. Wang, F.C. Wu, and Z.Y. Fu, Sci. Total. Environ. 421, 41 (2012).

    Article  Google Scholar 

  3. J.G. Yang, C.B. Tang, Y.M. Chen, J. He, and M.T. Tang, Metall. Mater. Trans. B 42, 30 (2011).

    Article  Google Scholar 

  4. C. Hansell, Nat. Chem. 88, 3 (2015).

    Google Scholar 

  5. M. Chen and X. Dai, JOM 70, 41 (2018).

    Article  Google Scholar 

  6. W. Liu, H.L. Luo, W.Q. Qing, Y.X. Zheng, K. Yang, and J.W. Han, Metall. Mater. Trans. B 45, 1281 (2014).

    Article  Google Scholar 

  7. S.A. Awe and A. Sandstrom, Hydrometallurgy 137, 60 (2013).

    Article  Google Scholar 

  8. J.G. Yang, S.H. Yang, and C.B. Tang, Metall. Mater. Trans. B 41, 527 (2010).

    Article  Google Scholar 

  9. S.A. Awe, J.E. Sundkvist, and A. Sandstrom, Miner. Eng. 53, 39 (2013).

    Article  Google Scholar 

  10. S.A. Awe, J.E. Sundkvist, N.J. Bolin, and A. Sundstrom, Miner. Eng. 49, 45 (2013).

    Article  Google Scholar 

  11. Z.W. Wang, J.J. Ru, J.J. Bu, Y.X. Hua, Y. Zhang, and C.Y. Xu, J. Electrochem. Soc. 166, 747 (2019).

    Article  Google Scholar 

  12. E. Vahidi and F. Zhao, Resour. Conserve Recycl. 139, 178 (2018).

    Article  Google Scholar 

  13. B.Q. Lin and L. Xu, Renew. Sust. Energy Rev. 43, 676 (2015).

    Article  Google Scholar 

  14. W. Liu, D.F. Zhou, and Z.B. Zhao, JOM 71, 2420 (2019).

    Article  Google Scholar 

  15. F. Colom and M.D.L. Cruz, Electrochim. Acta 14, 217 (1969).

    Article  Google Scholar 

  16. G.Z. Chen, D.J. Fray, and T.W. Farthing, Nature 407, 361 (2000).

    Article  Google Scholar 

  17. X. Wang and C.F. Liao, Int. J. Refract. Met. Hard Mater. 31, 205 (2012).

    Article  Google Scholar 

  18. X.L. Xi, Q.Q. Liu, Z.R. Nie, M. Li, and L.W. Ma, Int. J. Refract. Met. Hard Mater. 70, 77 (2018).

    Article  Google Scholar 

  19. T. Wang, H.P. Gao, X.B. Jin, H.L. Chen, J.J. Peng, and G.Z. Cen, Electrochem. Commun. 13, 1492 (2011).

    Article  Google Scholar 

  20. M.S. Tan, R. He, Y.T. Yuan, Z.Y. Wang, and X.B. Jin, Electrochim. Acta 213, 148 (2016).

    Article  Google Scholar 

  21. H.Y. Yin, B. Chung, and D.R. Sadoway, Nat. Commun. 7, 12548 (2016).

    Article  Google Scholar 

  22. O.P. Mohapatra, C.B. Alcock, and K.T. Jacob, Metall. Trans. 4, 1755 (1973).

    Article  Google Scholar 

  23. Y.M. Chen, L.G. Ye, C.B. Tang, S.H. Yang, T.M. Tang, and T. Nonferr, Metal. Soc. 25, 3146 (2015).

    Google Scholar 

  24. Z.Y. Zhou, Y.X. Hua, C.Y. Xu, Y. Li, X. Li, and Z. Zhang, J. Alloy Compd. 726, 1124 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Grant No. 52074362).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguang Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Yang, J., Tang, C. et al. Electroreduction of Antimony Sulfide Enhanced by Nitrogen Bottom Blowing in Molten NaCl-KCl-Na2S. JOM 74, 1889–1899 (2022). https://doi.org/10.1007/s11837-021-05148-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05148-1

Navigation