Skip to main content
Log in

Oxidation Mechanism During Pyrometallurgical Vanadium Extraction Process Using CO2-Containing Gas

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In the present work, the oxidation characterization and mechanism of vanadium extraction by bottom injection of CO2 were investigated based on laboratory experiments and pilot tests. In addition, variations of the compositions of all stable phases including gas, hot metal, slag, and spinel during the vanadium extraction process through injecting pure O2, 15 vol.% CO2-85 vol.% O2, and 30 vol.% CO2-70 vol.% O2 gases were simulated based on the recently optimized vanadium-containing oxides database stored in FactSage software. As a consequence, oxidation of vanadium by CO2 was an apparent second-order reaction. Transformation of dissolved vanadium to vanadium-containing spinel can be enhanced with bottom injection of 15 vol.% CO2–85 vol.% O2 into the hot metal. With the increase of bottom injected CO2 from 15 vol.% to 30 vol.%, the oxidation of dissolved vanadium could be restrained due to the reduction of oxygen potential originating from partial replacement of O2 by CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Yin, F. Maresca, and W.A. Curtin, Acta Mater. 188, 486. (2020).

    Article  Google Scholar 

  2. J. Diao, Y.Y. Qiu, J. Lei, Q. Zhang, W.F. Tan, H.Y. Li, and B. Xie, JOM 73, 999. (2021).

    Article  Google Scholar 

  3. W.T. Du, Y. Wang, and X. Liang, JOM 69, 1785. (2017).

    Article  Google Scholar 

  4. R.R. Moskalyk, and A.M. Alfantazi, Miner. Eng. 16, 793. (2003).

    Article  Google Scholar 

  5. Y. Lan and J. Liu, Eng. Sci. 3, 58. (2005).

    Google Scholar 

  6. C. Zou, B. Xiong, H. Xue, D. Zheng, Z. Ge, Y. Wang, L. Jiang, S. Pan, and S. Wu, Pet. Explor. Dev. 48, 480. (2021).

    Article  Google Scholar 

  7. B. Han, G. Wei, R. Zhu, W. Wu, J.J. Jiang, C. Feng, J.F. Dong, S.Y. Hu, and R.Z. Liu, J. CO2 Util. 34, 53. (2019).

    Article  Google Scholar 

  8. Z. Li, R. Zhu, G. Ma, and X. Wang, Ironmak. Steelmak. 9233, 1. (2016).

    Google Scholar 

  9. Y. Fan, X. Hu, R. Zhu, and K. Chou, ISIJ Int. 60, 848. (2020).

    Article  Google Scholar 

  10. C. Yi, R. Zhu, B. Chen, C. Wang, and J.X. Ke, ISIJ Int. 49, 1694. (2009).

    Article  Google Scholar 

  11. M. Lv, R. Zhu, X. Wei, H. Wang, and X. Bi, Steel Res. Int. 83, 11. (2012).

    Article  Google Scholar 

  12. G. Wei, R. Zhu, X. Wu, K. Dong, L. Yang, and R. Liu, JOM 70, 969. (2018).

    Article  Google Scholar 

  13. Y. Gu, H. Wang, R. Zhu, J. Wang, M. Lv, and H. Wang, Steel Res. Int. 85, 589. (2014).

    Article  Google Scholar 

  14. B. Han, R. Zhu, Y. Zhu, R. Liu, W. Wu, Q. Li, and G. Wei, Metall. Mater. Trans. B 49, 3544. (2018).

    Article  Google Scholar 

  15. W.T. Du, Q. Jiang, Z. Chen, X. Liang, and Y. Wang, JOM 71, 4925. (2019).

    Article  Google Scholar 

  16. X. You, S. He, M. Zhang, J. Zeng, L. Li, Q. Wang, Q. Wang, and Y. Li, Steel Res. Int. 91, 1900450. (2020).

    Article  Google Scholar 

  17. N. Lebrun and P. Perrot, in Refractory Metal Systems (Selected Systems from C-Ta-W to Ti-V-W), edited by G. Effenberg and S. Ilyenko (Berlin, Heidelberg, 2010), pp. 304–329.

  18. W.T. Du and I.H. Jung, Calphad 67, 101682. (2019).

    Article  Google Scholar 

  19. M. Hillert, J. Alloys Compd. 320, 161. (2001).

    Article  Google Scholar 

  20. A.D. Pelton, S.A. Degterov, G. Eriksson, C. Robelin, and Y. Dessureault, Metall. Mater. Trans. B 31, 651. (2000).

    Article  Google Scholar 

  21. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.A. Van Ende, Calphad 55, 1. (2016).

    Article  Google Scholar 

  22. I.H. Jung and M.A. Van Ende, Metall. Mater. Trans. B 51, 1851. (2020).

    Article  Google Scholar 

  23. A. Biswas, C. Sahoo, W.T. Du, I.H. Jung, and M. Paliwal, Metall. Mater. Trans. B (2021).

  24. T. Jantzen, E. Yazhenskikh, K. Hack, M. Baben, G. Wu, and M. Müller, Calphad 74, 102284. (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the Natural Science Foundation of Jiangsu Province (Grant No. BK20210888) and the Natural Science Foundation of Higher Education of Jiangsu Province (Grant No. 20KJB450001, 20KJD450001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, WT., You, ZM., Ju, DC. et al. Oxidation Mechanism During Pyrometallurgical Vanadium Extraction Process Using CO2-Containing Gas. JOM 74, 314–321 (2022). https://doi.org/10.1007/s11837-021-05026-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-05026-w

Navigation